Characterization of the optimum of a quadratic program with convex constraints. Application to sensor data fusion

C. Musso, P. Dodin
{"title":"Characterization of the optimum of a quadratic program with convex constraints. Application to sensor data fusion","authors":"C. Musso, P. Dodin","doi":"10.1109/ICIF.2002.1020991","DOIUrl":null,"url":null,"abstract":"We analyse theoretically a maximisation quadratic program which can arise in multi-target/multi-sensor area. The goal is to find the point x which minimizes the quadratic distance between x and a given point y. This optimum must lie in a convex constrained region defined by linear inequalities. We present a characterisation of this optimum in a compact dual form. This optimisation framework can be helpful, for example, in muti-objective programming like decentralized resource allocation.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyse theoretically a maximisation quadratic program which can arise in multi-target/multi-sensor area. The goal is to find the point x which minimizes the quadratic distance between x and a given point y. This optimum must lie in a convex constrained region defined by linear inequalities. We present a characterisation of this optimum in a compact dual form. This optimisation framework can be helpful, for example, in muti-objective programming like decentralized resource allocation.
具有凸约束的二次规划的最优性。传感器数据融合的应用
从理论上分析了多目标/多传感器领域中可能出现的最大化二次规划。目标是找到使x和给定点y之间的二次距离最小的点x。这个最优点必须位于由线性不等式定义的凸约束区域中。我们给出了这个最优的紧对偶形式的一个表征。这种优化框架可以很有帮助,例如,在多目标编程中,如分散的资源分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信