{"title":"Geometry Optimization of Cylindrical Flaps of Oscillating Wave Surge Converters Using Artificial Neural Network Models","authors":"Chen-Chou Lin, Y. Chow, Yu-Yu Huang","doi":"10.1115/es2019-3878","DOIUrl":null,"url":null,"abstract":"\n This paper presents an optimization algorithm based on the Artificial Neural Network (ANN) to determine the optimal shape, size, and density for the cylindrical flap of the Bottom-Hinged Oscillating Wave Surge Converter (BH-OWSC) that can extract maximal wave power under a given wave condition. Eight parameters are selected, and their upper and lower bounds are set at the initial stage, and then 64 cases with different combinatorial parametric settings are generated by the Design of Experiment process. The 64 cases are then fed into FLOW-3D to simulate the operations of the BH-OWSC under the given wave condition for calculating the capture factor, establishing a database for subsequent ANN data training purpose.\n To search the maximal capture factor in the specific range of the flap models, we fed 107 random models with various levels of design parameters into the ANN model, which adopts the backpropagation architecture and one hidden layer with ten neuron cells. After three complete random searches, and by simulating the ANN-derived flap’s geometry using FLOW-3D, the result shows that a maximal capture factor of 1.824 can be obtained. The major geometric features of the flap with maximal capture factor are (1) the cylinder axis of the flap inclines to the opposite direction of incident wave propagation, (2) the cylinder’s sectional diameters are about the same size, and (3) the smaller flap density the better power capturing performance.","PeriodicalId":219138,"journal":{"name":"ASME 2019 13th International Conference on Energy Sustainability","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 13th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2019-3878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an optimization algorithm based on the Artificial Neural Network (ANN) to determine the optimal shape, size, and density for the cylindrical flap of the Bottom-Hinged Oscillating Wave Surge Converter (BH-OWSC) that can extract maximal wave power under a given wave condition. Eight parameters are selected, and their upper and lower bounds are set at the initial stage, and then 64 cases with different combinatorial parametric settings are generated by the Design of Experiment process. The 64 cases are then fed into FLOW-3D to simulate the operations of the BH-OWSC under the given wave condition for calculating the capture factor, establishing a database for subsequent ANN data training purpose.
To search the maximal capture factor in the specific range of the flap models, we fed 107 random models with various levels of design parameters into the ANN model, which adopts the backpropagation architecture and one hidden layer with ten neuron cells. After three complete random searches, and by simulating the ANN-derived flap’s geometry using FLOW-3D, the result shows that a maximal capture factor of 1.824 can be obtained. The major geometric features of the flap with maximal capture factor are (1) the cylinder axis of the flap inclines to the opposite direction of incident wave propagation, (2) the cylinder’s sectional diameters are about the same size, and (3) the smaller flap density the better power capturing performance.