Arham Muslim, Mohamed Amine Chatti, T. Mahapatra, U. Schroeder
{"title":"A rule-based indicator definition tool for personalized learning analytics","authors":"Arham Muslim, Mohamed Amine Chatti, T. Mahapatra, U. Schroeder","doi":"10.1145/2883851.2883921","DOIUrl":null,"url":null,"abstract":"In the last few years, there has been a growing interest in learning analytics (LA) in technology-enhanced learning (TEL). Generally, LA deals with the development of methods that harness educational data sets to support the learning process. Recently, the concept of open learning analytics (OLA) has received a great deal of attention from LA community, due to the growing demand for self-organized, networked, and lifelong learning opportunities. A key challenge in OLA is to follow a personalized and goal-oriented LA model that tailors the LA task to the needs and goals of multiple stakeholders. Current implementations of LA rely on a predefined set of questions and indicators. There is, however, a need to adopt a personalized LA approach that engages end users in the indicator definition process by supporting them in setting goals, posing questions, and self-defining the indicators that help them achieve their goals. In this paper, we address the challenge of personalized LA and present the conceptual, design, and implementation details of a rule-based indicator definition tool to support flexible definition and dynamic generation of indicators to meet the needs of different stakeholders with diverse goals and questions in the LA exercise.","PeriodicalId":343844,"journal":{"name":"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883851.2883921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
In the last few years, there has been a growing interest in learning analytics (LA) in technology-enhanced learning (TEL). Generally, LA deals with the development of methods that harness educational data sets to support the learning process. Recently, the concept of open learning analytics (OLA) has received a great deal of attention from LA community, due to the growing demand for self-organized, networked, and lifelong learning opportunities. A key challenge in OLA is to follow a personalized and goal-oriented LA model that tailors the LA task to the needs and goals of multiple stakeholders. Current implementations of LA rely on a predefined set of questions and indicators. There is, however, a need to adopt a personalized LA approach that engages end users in the indicator definition process by supporting them in setting goals, posing questions, and self-defining the indicators that help them achieve their goals. In this paper, we address the challenge of personalized LA and present the conceptual, design, and implementation details of a rule-based indicator definition tool to support flexible definition and dynamic generation of indicators to meet the needs of different stakeholders with diverse goals and questions in the LA exercise.