A new algorithm for multi-mode recommendations in social tagging systems

Tan Yang, Yidong Cui, Yuehui Jin, Maoqiang Song
{"title":"A new algorithm for multi-mode recommendations in social tagging systems","authors":"Tan Yang, Yidong Cui, Yuehui Jin, Maoqiang Song","doi":"10.1109/CCIS.2012.6664264","DOIUrl":null,"url":null,"abstract":"Social tagging is one of the most important characteristics of web 2.0 services. Different from traditional recommendation algorithms, in social tagging systems, recommendation algorithms involve the ternary relations between users, items and tags. And algorithms that support integrated multi-mode recommendations are very appealing. We propose a multi-mode recommendation algorithm based on higher-order singular value decomposition, and our algorithm handles not only the existing triplets {user, item, tag}, but also the pairs {user, item} with no tags in social tagging system. Meanwhile. We propose a measure for user recommendations. We empirically show that our algorithm outperforms a state-of-the-art algorithm for multi-mode recommendations with a Last.fm dataset.","PeriodicalId":392558,"journal":{"name":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2012.6664264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Social tagging is one of the most important characteristics of web 2.0 services. Different from traditional recommendation algorithms, in social tagging systems, recommendation algorithms involve the ternary relations between users, items and tags. And algorithms that support integrated multi-mode recommendations are very appealing. We propose a multi-mode recommendation algorithm based on higher-order singular value decomposition, and our algorithm handles not only the existing triplets {user, item, tag}, but also the pairs {user, item} with no tags in social tagging system. Meanwhile. We propose a measure for user recommendations. We empirically show that our algorithm outperforms a state-of-the-art algorithm for multi-mode recommendations with a Last.fm dataset.
社会标签系统中多模式推荐的新算法
社会标签是web 2.0服务最重要的特征之一。与传统的推荐算法不同,在社交标签系统中,推荐算法涉及到用户、项目和标签之间的三元关系。支持集成多模式推荐的算法非常有吸引力。提出了一种基于高阶奇异值分解的多模式推荐算法,该算法不仅可以处理社会标签系统中存在的{user, item, tag}三元组,还可以处理社会标签系统中没有标签的{user, item}对。与此同时。我们提出了一个衡量用户推荐的方法。我们的经验表明,我们的算法优于具有Last的多模式推荐的最先进算法。调频的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信