GPU-based Cloud computing for comparing the structure of protein binding sites

M. Leinweber, Lars Baumgärtner, Marco Mernberger, T. Fober, E. Hüllermeier, G. Klebe, Bernd Freisleben
{"title":"GPU-based Cloud computing for comparing the structure of protein binding sites","authors":"M. Leinweber, Lars Baumgärtner, Marco Mernberger, T. Fober, E. Hüllermeier, G. Klebe, Bernd Freisleben","doi":"10.1109/DEST.2012.6227926","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach for using a GPU-based Cloud computing infrastructure to efficiently perform a structural comparison of protein binding sites. The original CPU-based Java version of a recent graph-based algorithm called SEGA has been rewritten in OpenCL to run on NVIDIA GPUs in parallel on a set of Amazon EC2 Cluster GPU Instances. This new implementation of SEGA has been tested on a subset of protein structure data contained in the CavBase, providing a structural comparison of protein binding sites on a much larger scale than in previous research efforts reported in the literature.","PeriodicalId":320291,"journal":{"name":"2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEST.2012.6227926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we present a novel approach for using a GPU-based Cloud computing infrastructure to efficiently perform a structural comparison of protein binding sites. The original CPU-based Java version of a recent graph-based algorithm called SEGA has been rewritten in OpenCL to run on NVIDIA GPUs in parallel on a set of Amazon EC2 Cluster GPU Instances. This new implementation of SEGA has been tested on a subset of protein structure data contained in the CavBase, providing a structural comparison of protein binding sites on a much larger scale than in previous research efforts reported in the literature.
基于gpu的云计算,比较蛋白质结合位点的结构
在本文中,我们提出了一种使用基于gpu的云计算基础设施来有效地执行蛋白质结合位点的结构比较的新方法。最近基于图形的算法SEGA的原始基于cpu的Java版本已经在OpenCL中重写,以便在一组Amazon EC2集群GPU实例上并行运行NVIDIA GPU。这种SEGA的新实现已经在CavBase中包含的蛋白质结构数据子集上进行了测试,提供了比以往文献中报道的更大规模的蛋白质结合位点的结构比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信