Evaluating Code-Switched Malay-English Speech Using Time Delay Neural Networks.

Anand Singh, Tien-Ping Tan
{"title":"Evaluating Code-Switched Malay-English Speech Using Time Delay Neural Networks.","authors":"Anand Singh, Tien-Ping Tan","doi":"10.21437/SLTU.2018-40","DOIUrl":null,"url":null,"abstract":"This paper presents a new baseline for Malay-English code-switched speech corpus; which is constructed using a factored form of time delay neural networks (TDNN-F), which reflected a significant relative percentage reduction of 28.07% in the word-error rate (WER), as compared to the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). The presented results also confirm the effectiveness of time delay neural networks (TDNNs) for code-switched speech.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a new baseline for Malay-English code-switched speech corpus; which is constructed using a factored form of time delay neural networks (TDNN-F), which reflected a significant relative percentage reduction of 28.07% in the word-error rate (WER), as compared to the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). The presented results also confirm the effectiveness of time delay neural networks (TDNNs) for code-switched speech.
用时滞神经网络评价马来语-英语语码转换语音。
本文提出了马来语-英语语码转换语料库的新基线;该模型使用因子形式的时滞神经网络(TDNN-F)构建,与高斯混合模型-隐马尔可夫模型(GMM-HMM)相比,单词错误率(WER)显著降低了28.07%。本文的研究结果也证实了延时神经网络(TDNNs)在编码切换语音中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信