A Statistical Framework for Handling Network Anomalies

M. Bouguessa, Amani Chouchane
{"title":"A Statistical Framework for Handling Network Anomalies","authors":"M. Bouguessa, Amani Chouchane","doi":"10.1109/ASONAM.2018.8508299","DOIUrl":null,"url":null,"abstract":"This paper proposes a statistical framework to automatically identify anomalous nodes in static networks. In our approach, we first associate to each node a neighborhood cohesiveness feature vector such that each element of this vector corresponds to a score quantifying the node's neighborhood connectivity, as estimated by a specific similarity measure. Next, based on the estimated node's feature vectors, we view the task of identifying anomalous nodes from a mixture modeling perspective, based on which we elaborate a statistical approach that exploits the Dirichlet distribution to automatically identify anomalies. The suitability of the proposed method is illustrated through experiments on both synthesized and real networks.","PeriodicalId":135949,"journal":{"name":"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2018.8508299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a statistical framework to automatically identify anomalous nodes in static networks. In our approach, we first associate to each node a neighborhood cohesiveness feature vector such that each element of this vector corresponds to a score quantifying the node's neighborhood connectivity, as estimated by a specific similarity measure. Next, based on the estimated node's feature vectors, we view the task of identifying anomalous nodes from a mixture modeling perspective, based on which we elaborate a statistical approach that exploits the Dirichlet distribution to automatically identify anomalies. The suitability of the proposed method is illustrated through experiments on both synthesized and real networks.
网络异常处理的统计框架
本文提出了一种静态网络异常节点自动识别的统计框架。在我们的方法中,我们首先将每个节点关联到一个邻域内聚性特征向量,这样该向量的每个元素对应于一个量化节点邻域连通性的分数,这是通过特定的相似性度量来估计的。接下来,基于估计节点的特征向量,我们从混合建模的角度来看待异常节点的识别任务,在此基础上,我们阐述了一种利用Dirichlet分布来自动识别异常的统计方法。通过在合成网络和真实网络上的实验证明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信