Mining the Impact of Social Media on High-Frequency Financial data

R. Hashemi, Omid M. Ardakani, Jeffrey A. Young, Chanchal Tamrakar
{"title":"Mining the Impact of Social Media on High-Frequency Financial data","authors":"R. Hashemi, Omid M. Ardakani, Jeffrey A. Young, Chanchal Tamrakar","doi":"10.1109/CSCI54926.2021.00115","DOIUrl":null,"url":null,"abstract":"Establishing the relationship between stock price changes of a fortune 500 company and events (such as political, social, and/or business) is a multi-dimensional complex problem. However, such events change the social mood, which manifests itself in social media communications. Therefore, we collected time-series high frequency financial (HFF) data alongside corresponding time-series tweets about the same company for six months in 2019. Five months of data was used to (a) mine impactful tweets (nuggets) on minute-by-minute stock price changes, (b) discover and validate the nuggets profile, (c) predict future impactful tweets prior to their effects on the stock price using the HFF data and tweets for the sixth month as a test set, and (d) maintain an up-to-date nuggets profile. The results revealed successful detection of nuggets of tweets with a certainty factor close to 80%. Such prediction may greatly affect the decisions regarding market analytics.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Establishing the relationship between stock price changes of a fortune 500 company and events (such as political, social, and/or business) is a multi-dimensional complex problem. However, such events change the social mood, which manifests itself in social media communications. Therefore, we collected time-series high frequency financial (HFF) data alongside corresponding time-series tweets about the same company for six months in 2019. Five months of data was used to (a) mine impactful tweets (nuggets) on minute-by-minute stock price changes, (b) discover and validate the nuggets profile, (c) predict future impactful tweets prior to their effects on the stock price using the HFF data and tweets for the sixth month as a test set, and (d) maintain an up-to-date nuggets profile. The results revealed successful detection of nuggets of tweets with a certainty factor close to 80%. Such prediction may greatly affect the decisions regarding market analytics.
挖掘社交媒体对高频金融数据的影响
建立一家财富500强公司的股票价格变化与事件(如政治、社会和/或商业)之间的关系是一个多维的复杂问题。然而,这些事件改变了社会情绪,这在社交媒体传播中表现出来。因此,我们收集了2019年6个月同一家公司的时间序列高频财务(HFF)数据以及相应的时间序列推文。五个月的数据被用来(a)挖掘每分钟股价变化的有影响力的推文(掘金),(b)发现并验证掘金概况,(c)使用HFF数据和第六个月的推文作为测试集,预测未来有影响力的推文对股价的影响,以及(d)维护最新的掘金概况。结果显示,成功检测到的推文掘金的确定性系数接近80%。这种预测可能会极大地影响有关市场分析的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信