Directing the structure of matter through DNA nanotechnology

N. Seeman
{"title":"Directing the structure of matter through DNA nanotechnology","authors":"N. Seeman","doi":"10.1109/IJSIS.1998.685432","DOIUrl":null,"url":null,"abstract":"The sticky-ended association of DNA molecules occurs with high specificity, and it results in the formation of B-DNA, whose structure is well known. The use of stable branched DNA molecules permits one to make stick-figures. We have used this strategy to construct a covalently closed DNA molecule whose helix axes have the connectivity of a cube, and a second molecule, whose helix axes have the connectivity of a truncated octahedron. In addition to branching topology, DNA also affords control of linking topology, because double helical half-turns of B-DNA or Z-DNA can be equated, respectively, with negative or positive crossings in topological objects. Consequently, we have been able to use DNA to make trefoil knots of both signs and figure-8 knobs. DNA-based topological control has also led to the construction of Borromean rings. The key feature previously lacking in DNA construction has been a rigid molecule. We have discovered that antiparallel DNA double crossover molecules can provide this capability.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sticky-ended association of DNA molecules occurs with high specificity, and it results in the formation of B-DNA, whose structure is well known. The use of stable branched DNA molecules permits one to make stick-figures. We have used this strategy to construct a covalently closed DNA molecule whose helix axes have the connectivity of a cube, and a second molecule, whose helix axes have the connectivity of a truncated octahedron. In addition to branching topology, DNA also affords control of linking topology, because double helical half-turns of B-DNA or Z-DNA can be equated, respectively, with negative or positive crossings in topological objects. Consequently, we have been able to use DNA to make trefoil knots of both signs and figure-8 knobs. DNA-based topological control has also led to the construction of Borromean rings. The key feature previously lacking in DNA construction has been a rigid molecule. We have discovered that antiparallel DNA double crossover molecules can provide this capability.
通过DNA纳米技术来指导物质结构
DNA分子的粘端结合具有很高的特异性,它导致B-DNA的形成,其结构是众所周知的。使用稳定的支链DNA分子可以制作简笔画。我们使用这种策略构建了一个共价封闭的DNA分子,其螺旋轴具有立方体的连通性,以及第二个分子,其螺旋轴具有截断的八面体的连通性。除了分支拓扑外,DNA还提供了连接拓扑的控制,因为B-DNA或Z-DNA的双螺旋半旋可以分别等同于拓扑对象中的负或正交叉。因此,我们已经能够使用DNA来制作符号和数字8旋钮的三叶草结。基于dna的拓扑控制也导致了博罗米安环的构建。以前DNA结构中缺乏的关键特征是刚性分子。我们发现反平行DNA双交叉分子可以提供这种能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信