Time-Optimized Task Offloading Decision Making in Mobile Edge Computing

Ibrahim A. Alghamdi, C. Anagnostopoulos, D. Pezaros
{"title":"Time-Optimized Task Offloading Decision Making in Mobile Edge Computing","authors":"Ibrahim A. Alghamdi, C. Anagnostopoulos, D. Pezaros","doi":"10.1109/WD.2019.8734210","DOIUrl":null,"url":null,"abstract":"Mobile Edge Computing application domains such as vehicular networks, unmanned aerial vehicles, data analytics tasks at the edge and augmented reality have recently emerged. Under such domains, while mobile nodes are moving and have certain tasks to be offloaded to Edge Servers, choosing an appropriate time and an ideally suited server to guarantee the quality of service can be challenging. We tackle the offloading decision making problem by adopting the principles of Optimal Stopping Theory to minimize the execution delay in a sequential decision manner. A performance evaluation is provided by using real data sets compared with the optimal solution. The results show that our approach significantly minimizes the execution delay for task execution and the results are very close to the optimal solution.","PeriodicalId":432101,"journal":{"name":"2019 Wireless Days (WD)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Wireless Days (WD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2019.8734210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Mobile Edge Computing application domains such as vehicular networks, unmanned aerial vehicles, data analytics tasks at the edge and augmented reality have recently emerged. Under such domains, while mobile nodes are moving and have certain tasks to be offloaded to Edge Servers, choosing an appropriate time and an ideally suited server to guarantee the quality of service can be challenging. We tackle the offloading decision making problem by adopting the principles of Optimal Stopping Theory to minimize the execution delay in a sequential decision manner. A performance evaluation is provided by using real data sets compared with the optimal solution. The results show that our approach significantly minimizes the execution delay for task execution and the results are very close to the optimal solution.
移动边缘计算中时间优化的任务卸载决策
最近出现了移动边缘计算应用领域,如车载网络、无人机、边缘数据分析任务和增强现实。在这样的域中,虽然移动节点正在移动并且有某些任务要卸载到边缘服务器,但选择适当的时间和理想的合适服务器来保证服务质量可能是具有挑战性的。我们采用最优停止理论的原则,以顺序决策的方式最小化执行延迟来解决卸载决策问题。用实际数据集与最优解进行了性能评价。结果表明,我们的方法显著地减小了任务执行的执行延迟,结果非常接近最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信