Efficient energy smart sensor for fall detection based on accelerometer data and CNN model

Brahim Achour, Idir Filali, Malika Belkadi, M. Laghrouche
{"title":"Efficient energy smart sensor for fall detection based on accelerometer data and CNN model","authors":"Brahim Achour, Idir Filali, Malika Belkadi, M. Laghrouche","doi":"10.1109/EDiS57230.2022.9996539","DOIUrl":null,"url":null,"abstract":"Fall detection helps to provide medical assistance quickly and to avoid the aggravation of injuries. In this paper, we propose a new noninvasive and energy-efficient smart sensor for fall detection. The sensor is based on accelerometer data and is attached to 20 building workers. To reduce power consumption, a new method of data selection is proposed. This method is based on the use of sensor timers, which allows for the reduction of 91% of the acquired data and 94% of the transmitted data. Regarding the classification, a new classification approach is proposed. Indeed, each data segment is displayed as a graph. Then, a convolution neural network is trained to detect the presence or absence of falls in each graph. An accuracy of 98% was obtained. This result exceeds that obtained in several studies and shows the effectiveness of the proposed approach.","PeriodicalId":288133,"journal":{"name":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDiS57230.2022.9996539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fall detection helps to provide medical assistance quickly and to avoid the aggravation of injuries. In this paper, we propose a new noninvasive and energy-efficient smart sensor for fall detection. The sensor is based on accelerometer data and is attached to 20 building workers. To reduce power consumption, a new method of data selection is proposed. This method is based on the use of sensor timers, which allows for the reduction of 91% of the acquired data and 94% of the transmitted data. Regarding the classification, a new classification approach is proposed. Indeed, each data segment is displayed as a graph. Then, a convolution neural network is trained to detect the presence or absence of falls in each graph. An accuracy of 98% was obtained. This result exceeds that obtained in several studies and shows the effectiveness of the proposed approach.
基于加速度计数据和CNN模型的高效能量智能跌倒检测传感器
摔倒检测有助于迅速提供医疗援助,避免伤害加剧。在本文中,我们提出了一种新的无创、节能的智能跌倒检测传感器。该传感器基于加速度计数据,并与20名建筑工人相连。为了降低功耗,提出了一种新的数据选择方法。该方法基于传感器计时器的使用,可以减少91%的采集数据和94%的传输数据。在分类方面,提出了一种新的分类方法。实际上,每个数据段都显示为一个图。然后,训练卷积神经网络来检测每个图中是否存在跌落。准确度达到98%。这一结果超过了一些研究的结果,表明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信