Detecting Subdimensional Motifs: An Efficient Algorithm for Generalized Multivariate Pattern Discovery

David C. Minnen, C. Isbell, Irfan Essa, Thad Starner
{"title":"Detecting Subdimensional Motifs: An Efficient Algorithm for Generalized Multivariate Pattern Discovery","authors":"David C. Minnen, C. Isbell, Irfan Essa, Thad Starner","doi":"10.1109/ICDM.2007.52","DOIUrl":null,"url":null,"abstract":"Discovering recurring patterns in time series data is a fundamental problem for temporal data mining. This paper addresses the problem of locating subdimensional motifs in real-valued, multivariate time series, which requires the simultaneous discovery of sets of recurring patterns along with the corresponding relevant dimensions. While many approaches to motif discovery have been developed, most are restricted to categorical data, univariate time series, or multivariate data in which the temporal patterns span all of the dimensions. In this paper, we present an expected linear-time algorithm that addresses a generalization of multivariate pattern discovery in which each motif may span only a subset of the dimensions. To validate our algorithm, we discuss its theoretical properties and empirically evaluate it using several data sets including synthetic data and motion capture data collected by an on-body iner- tial sensor.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

Abstract

Discovering recurring patterns in time series data is a fundamental problem for temporal data mining. This paper addresses the problem of locating subdimensional motifs in real-valued, multivariate time series, which requires the simultaneous discovery of sets of recurring patterns along with the corresponding relevant dimensions. While many approaches to motif discovery have been developed, most are restricted to categorical data, univariate time series, or multivariate data in which the temporal patterns span all of the dimensions. In this paper, we present an expected linear-time algorithm that addresses a generalization of multivariate pattern discovery in which each motif may span only a subset of the dimensions. To validate our algorithm, we discuss its theoretical properties and empirically evaluate it using several data sets including synthetic data and motion capture data collected by an on-body iner- tial sensor.
子维基元检测:一种有效的广义多元模式发现算法
发现时间序列数据中的重复模式是时态数据挖掘的一个基本问题。本文解决了在实值多变量时间序列中定位子维度主题的问题,这需要同时发现与相应的相关维度相关的重复模式集。虽然已经开发了许多motif发现方法,但大多数方法仅限于分类数据,单变量时间序列或时间模式跨越所有维度的多变量数据。在本文中,我们提出了一种期望线性时间算法,该算法解决了多元模式发现的泛化问题,其中每个基序可能只跨越维度的一个子集。为了验证我们的算法,我们讨论了它的理论性质,并使用几个数据集对它进行了实证评估,这些数据集包括合成数据和由身体内部传感器收集的运动捕捉数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信