I. Carvalho, M. Peter, G. H. Demari, F. Lautenchleger, F. Carlos, T. Pedó, Victor Delino Barasuol Scarton, Aline Danielle Novello Silva, D. J. Hutra, Murilo Vieira Loro
{"title":"Efficiency in nitrogen management using conventional and transgenic technology in the cultivation of maize","authors":"I. Carvalho, M. Peter, G. H. Demari, F. Lautenchleger, F. Carlos, T. Pedó, Victor Delino Barasuol Scarton, Aline Danielle Novello Silva, D. J. Hutra, Murilo Vieira Loro","doi":"10.33158/ASB.R124.V7.2021","DOIUrl":null,"url":null,"abstract":"The objective to evaluate the maize yield components as a function of the top-dressing nitrogen partitioning in maize plants with conventional and transgenic technology. The experiment was carried out in the agricultural crops of 2012/2013 and 2013/2014, in the municipality of Tenente Portela-RS, Brazil. The experiment was set up in a randomized block design in a factorial scheme with two genetic technologies x 11 nitrogen fertilization treatments, arranged in three replications. The treatments were composed of top-dressing applications in the phenological stages V2 - two fully expanded leaves, (V2), V4 - four fully expanded leaves, (V4), V6 - six fully expanded leaves (V6) and V8 - with eight fully expanded leaves (V8) and split applications in V2+V4; V2+V6; V2+V8; V4+V6; V4+V8; V6+V8; and V2+V4+V6+V8. There was interaction between genetic technologies and levels of nitrogen fertilization in the maize crop. The highest grain yield was obtained with conventional technology because it presented plants with greater prolificacy, ear diameter and number of grains per row. Grain yield was superior with nitrogen fertilization in V4 and in nitrogen splitting in the V4 + V6, V4 + V8 and V2 + V4 + V6 + V8 stages.","PeriodicalId":297313,"journal":{"name":"Agronomy Science and Biotechnology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Science and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33158/ASB.R124.V7.2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The objective to evaluate the maize yield components as a function of the top-dressing nitrogen partitioning in maize plants with conventional and transgenic technology. The experiment was carried out in the agricultural crops of 2012/2013 and 2013/2014, in the municipality of Tenente Portela-RS, Brazil. The experiment was set up in a randomized block design in a factorial scheme with two genetic technologies x 11 nitrogen fertilization treatments, arranged in three replications. The treatments were composed of top-dressing applications in the phenological stages V2 - two fully expanded leaves, (V2), V4 - four fully expanded leaves, (V4), V6 - six fully expanded leaves (V6) and V8 - with eight fully expanded leaves (V8) and split applications in V2+V4; V2+V6; V2+V8; V4+V6; V4+V8; V6+V8; and V2+V4+V6+V8. There was interaction between genetic technologies and levels of nitrogen fertilization in the maize crop. The highest grain yield was obtained with conventional technology because it presented plants with greater prolificacy, ear diameter and number of grains per row. Grain yield was superior with nitrogen fertilization in V4 and in nitrogen splitting in the V4 + V6, V4 + V8 and V2 + V4 + V6 + V8 stages.