Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons

R. Wolke, H. Schwetlick
{"title":"Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons","authors":"R. Wolke, H. Schwetlick","doi":"10.1137/0909062","DOIUrl":null,"url":null,"abstract":"In solving robust linear regression problems, the parameter vector x, as well as an additional parameter s that scales the residuals, must be estimated simultaneously. A widely used method for doing so consists of first improving the scale parameter s for fixed x, and then improving x for fixed s by using a quadratic approximation to the objective function g. Since improving x is the expensive part of such algorithms, it makes sense to define the new scale s as a minimizes of g for fixed x. A strong global convergence analysis of this conceptual algorithm is given for a class of convex criterion functions and the so-called H- or W-approximations to g. Moreover, some appropriate finite and iterative subalgorithms for minimizing g with respect to s are discussed. Furthermore, the possibility of transforming the robust regression problem into a nonlinear least-squares problem is discussed. All algorithms described here were tested with a set of test problems, and the computational efficiency was compared wit...","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"199","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0909062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 199

Abstract

In solving robust linear regression problems, the parameter vector x, as well as an additional parameter s that scales the residuals, must be estimated simultaneously. A widely used method for doing so consists of first improving the scale parameter s for fixed x, and then improving x for fixed s by using a quadratic approximation to the objective function g. Since improving x is the expensive part of such algorithms, it makes sense to define the new scale s as a minimizes of g for fixed x. A strong global convergence analysis of this conceptual algorithm is given for a class of convex criterion functions and the so-called H- or W-approximations to g. Moreover, some appropriate finite and iterative subalgorithms for minimizing g with respect to s are discussed. Furthermore, the possibility of transforming the robust regression problem into a nonlinear least-squares problem is discussed. All algorithms described here were tested with a set of test problems, and the computational efficiency was compared wit...
迭代加权最小二乘:算法、收敛分析和数值比较
在求解鲁棒线性回归问题时,必须同时估计参数向量x以及对残差进行缩放的附加参数s。一种广泛使用的方法是,首先对固定x改进尺度参数s,然后通过使用目标函数g的二次逼近来改进固定s的x。由于改进x是这种算法中代价高昂的部分,对于一类凸准则函数和g的H-近似或w -近似,给出了该概念算法的强全局收敛性分析。此外,讨论了关于s最小化g的一些适当的有限和迭代子算法。进一步讨论了将鲁棒回归问题转化为非线性最小二乘问题的可能性。本文所描述的所有算法都通过一组测试问题进行了测试,并与…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信