Maximum Likelihood Recursive Extended Least Squares Estimation for Multivariate Equation-Error Moving Average Systems

Lijuan Liu, Yan Ji, F. Ding, Junhong Li
{"title":"Maximum Likelihood Recursive Extended Least Squares Estimation for Multivariate Equation-Error Moving Average Systems","authors":"Lijuan Liu, Yan Ji, F. Ding, Junhong Li","doi":"10.1109/ICMIC.2018.8529898","DOIUrl":null,"url":null,"abstract":"In this paper, the parameter identification of the multivariate equation-error moving average system is studied. The system is decomposed into several subsystems and a maximum likelihood recursive extended least squares identification algorithm is presented for estimating the parameter vector in each subsystem. The numerical simulation results indicate that the maximum likelihood recursive extended least squares identification algorithm is effective and get more accurate parameter estimates.","PeriodicalId":262938,"journal":{"name":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2018.8529898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the parameter identification of the multivariate equation-error moving average system is studied. The system is decomposed into several subsystems and a maximum likelihood recursive extended least squares identification algorithm is presented for estimating the parameter vector in each subsystem. The numerical simulation results indicate that the maximum likelihood recursive extended least squares identification algorithm is effective and get more accurate parameter estimates.
多元方程误差移动平均系统的极大似然递推扩展最小二乘估计
本文研究了多元方程误差移动平均系统的参数辨识问题。将系统分解为多个子系统,提出了一种极大似然递归扩展最小二乘辨识算法,用于估计各子系统的参数向量。数值仿真结果表明,极大似然递推扩展最小二乘辨识算法是有效的,能得到更准确的参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信