More Knowledge, Less Bias: Unbiasing Scene Graph Generation with Explicit Ontological Adjustment

Zhanwen Chen, Saed Rezayi, Sheng Li
{"title":"More Knowledge, Less Bias: Unbiasing Scene Graph Generation with Explicit Ontological Adjustment","authors":"Zhanwen Chen, Saed Rezayi, Sheng Li","doi":"10.1109/WACV56688.2023.00401","DOIUrl":null,"url":null,"abstract":"Scene graph generation (SGG) models seek to detect relationships between objects in a given image. One challenge in this area is the biased distribution of predicates in the dataset and the semantic space. Recent works incorporating knowledge graphs with scene graphs prove effective in improving recall for the tail predicate classes. Moreover, many recent SGG approaches with promising results explicitly redistribute the predicates in both the training process and in the prediction step. To incorporate external knowledge, we construct a commonsense knowledge graph by integrating ConceptNet and Wikidata. To explicitly unbias SGG with knowledge in the reasoning process, we propose a novel framework, Explicit Ontological Adjustment (EOA), to adjust the graph model predictions with knowledge priors. We use the edge matrix from the commonsense knowledge graph as a module in the graph neural network model to refine the relationship detection process. This module proves effective in alleviating the long-tail distribution of predicates. When combined, we show that these modules achieve state-of-the-art performance on the Visual Genome dataset in most cases. The source code is available at https://github.com/zhanwenchen/eoa.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Scene graph generation (SGG) models seek to detect relationships between objects in a given image. One challenge in this area is the biased distribution of predicates in the dataset and the semantic space. Recent works incorporating knowledge graphs with scene graphs prove effective in improving recall for the tail predicate classes. Moreover, many recent SGG approaches with promising results explicitly redistribute the predicates in both the training process and in the prediction step. To incorporate external knowledge, we construct a commonsense knowledge graph by integrating ConceptNet and Wikidata. To explicitly unbias SGG with knowledge in the reasoning process, we propose a novel framework, Explicit Ontological Adjustment (EOA), to adjust the graph model predictions with knowledge priors. We use the edge matrix from the commonsense knowledge graph as a module in the graph neural network model to refine the relationship detection process. This module proves effective in alleviating the long-tail distribution of predicates. When combined, we show that these modules achieve state-of-the-art performance on the Visual Genome dataset in most cases. The source code is available at https://github.com/zhanwenchen/eoa.
更多的知识,更少的偏差:带有明确本体调整的无偏场景图生成
场景图生成(SGG)模型试图检测给定图像中物体之间的关系。该领域的一个挑战是谓词在数据集和语义空间中的偏分布。最近将知识图与场景图结合起来的工作证明了在提高尾谓词类的召回率方面是有效的。此外,最近许多具有良好结果的SGG方法在训练过程和预测步骤中都明确地重新分配了谓词。为了整合外部知识,我们将概念网和维基数据相结合,构建了一个常识知识图。为了在推理过程中明确地消除带有知识的图模型的偏差,我们提出了一个新的框架——显式本体论调整(Explicit Ontological Adjustment, EOA),来调整带有知识先验的图模型预测。我们将常识图中的边缘矩阵作为图神经网络模型中的一个模块来改进关系检测过程。事实证明,该模块可以有效地缓解谓词的长尾分布。当组合在一起时,我们表明这些模块在大多数情况下在Visual Genome数据集上实现了最先进的性能。源代码可从https://github.com/zhanwenchen/eoa获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信