Distributed quasi-Monte Carlo algorithm for option pricing on HNOWs using mpC

Gong Chen, P. Thulasiraman, R. Thulasiram
{"title":"Distributed quasi-Monte Carlo algorithm for option pricing on HNOWs using mpC","authors":"Gong Chen, P. Thulasiraman, R. Thulasiram","doi":"10.1109/ANSS.2006.20","DOIUrl":null,"url":null,"abstract":"Monte Carlo (MC) simulation is one of the popular approaches for approximating the value of options and other derivative securities due to the absence of straightforward closed form solutions for many financial models. However, the slow convergence rate, O(N/sup - 1/2/) for N number of samples of the MC method has motivated research in quasi Monte-Carlo (QMC) techniques. QMC methods use low discrepancy (LD) sequences that provide faster, more accurate results than MC methods. In this paper, we focus on the parallelization of the QMC method on a heterogeneous network of workstations (HNOWs) for option pricing. HNOWs are machines with different processing capabilities and have distinct execution time for the same task. It is therefore important to allocate and schedule the tasks depending on the performance and resources of these machines. We present an adaptive, distributed QMC algorithm for option pricing, taking into account the performances of both processors and communications. The algorithm distributes data and computations based on the architectural features of the available processors at run time. We implement the algorithm using mpC, an extension of ANSI C language for parallel computation on heterogeneous networks. We compare and analyze the performance results with different parallel implementations. The results of our algorithm demonstrate a good performance on heterogenous parallel platforms.","PeriodicalId":308739,"journal":{"name":"39th Annual Simulation Symposium (ANSS'06)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"39th Annual Simulation Symposium (ANSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANSS.2006.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Monte Carlo (MC) simulation is one of the popular approaches for approximating the value of options and other derivative securities due to the absence of straightforward closed form solutions for many financial models. However, the slow convergence rate, O(N/sup - 1/2/) for N number of samples of the MC method has motivated research in quasi Monte-Carlo (QMC) techniques. QMC methods use low discrepancy (LD) sequences that provide faster, more accurate results than MC methods. In this paper, we focus on the parallelization of the QMC method on a heterogeneous network of workstations (HNOWs) for option pricing. HNOWs are machines with different processing capabilities and have distinct execution time for the same task. It is therefore important to allocate and schedule the tasks depending on the performance and resources of these machines. We present an adaptive, distributed QMC algorithm for option pricing, taking into account the performances of both processors and communications. The algorithm distributes data and computations based on the architectural features of the available processors at run time. We implement the algorithm using mpC, an extension of ANSI C language for parallel computation on heterogeneous networks. We compare and analyze the performance results with different parallel implementations. The results of our algorithm demonstrate a good performance on heterogenous parallel platforms.
基于mpC的HNOWs期权定价的分布式拟蒙特卡罗算法
由于许多金融模型缺乏直接的封闭形式解,蒙特卡罗(MC)模拟是逼近期权和其他衍生证券价值的流行方法之一。然而,对于N个样本,MC方法的缓慢收敛速度为O(N/sup - 1/2/),这激发了准蒙特卡罗(QMC)技术的研究。QMC方法使用低差异(LD)序列,提供比MC方法更快、更准确的结果。本文主要研究了在异构工作站网络(HNOWs)上QMC期权定价方法的并行化问题。hnow是具有不同处理能力的机器,对于同一任务具有不同的执行时间。因此,根据这些机器的性能和资源来分配和调度任务是很重要的。我们提出了一种自适应的分布式QMC期权定价算法,同时考虑了处理器和通信的性能。该算法在运行时根据可用处理器的体系结构特征分配数据和计算。我们使用mpC实现该算法,mpC是ANSI C语言的一种扩展,用于异构网络上的并行计算。我们比较和分析了不同并行实现的性能结果。结果表明,该算法在异构并行平台上具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信