On-line scheduling in the presence of overload

Sanjoy Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha
{"title":"On-line scheduling in the presence of overload","authors":"Sanjoy Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha","doi":"10.1109/SFCS.1991.185354","DOIUrl":null,"url":null,"abstract":"The preemptive scheduling of sporadic tasks on a uniprocessor is considered. A task may arrive at any time, and is characterized by a value that reflects its importance, an execution time that is the amount of processor time needed to completely execute the task, and a deadline by which the task is to complete execution. The goal is to maximize the sum of the values of the completed tasks. An online scheduling algorithm that achieves optimal performance when the system is underloaded and provides a nontrivial performance guarantee when the system is overloaded is designed. The algorithm is implemented using simple data structures to run at a cost of O(log n) time per task, where n bounds the number of tasks in the system at any instant. Upper bounds on the best performance guarantee obtainable by an online algorithm in a variety of settings are derived.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

Abstract

The preemptive scheduling of sporadic tasks on a uniprocessor is considered. A task may arrive at any time, and is characterized by a value that reflects its importance, an execution time that is the amount of processor time needed to completely execute the task, and a deadline by which the task is to complete execution. The goal is to maximize the sum of the values of the completed tasks. An online scheduling algorithm that achieves optimal performance when the system is underloaded and provides a nontrivial performance guarantee when the system is overloaded is designed. The algorithm is implemented using simple data structures to run at a cost of O(log n) time per task, where n bounds the number of tasks in the system at any instant. Upper bounds on the best performance guarantee obtainable by an online algorithm in a variety of settings are derived.<>
过载情况下的在线调度
研究了单处理机上零星任务的抢占调度问题。任务可以在任何时间到达,其特征包括反映其重要性的值、执行时间(即完全执行任务所需的处理器时间量)以及任务完成执行的截止日期。目标是最大化完成任务的价值总和。设计了一种在线调度算法,在系统欠载时实现最优性能,在系统过载时提供重要的性能保证。该算法使用简单的数据结构来实现,每个任务的运行成本为O(log n),其中n限制了系统中任何时刻的任务数量。导出了在线算法在各种设置下可获得的最佳性能保证的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信