Graph Autoencoder-Based Embedded Learning in Dynamic Brain Networks for Autism Spectrum Disorder Identification

Fuad M. Noman, S. Yap, R. Phan, H. Ombao, C. Ting
{"title":"Graph Autoencoder-Based Embedded Learning in Dynamic Brain Networks for Autism Spectrum Disorder Identification","authors":"Fuad M. Noman, S. Yap, R. Phan, H. Ombao, C. Ting","doi":"10.1109/ICIP46576.2022.9898034","DOIUrl":null,"url":null,"abstract":"Recent applications of pattern recognition techniques to brain connectome-based classification focus on static functional connectivity (FC) neglecting the dynamics of FC over time, and use input connectivity matrices on a regular Euclidean grid. We exploit the graph convolutional networks (GCNs) to learn irregular structural patterns in brain FC networks and propose extensions to capture dynamic changes in network topology. We develop a dynamic graph autoencoder (DyGAE)-based framework to leverage the time-varying topological structures of dynamic brain networks for identification of autism spectrum disorder (ASD). The framework combines a GCN-based DyGAE to encode individual-level dynamic networks into time-varying low-dimensional network embeddings, and classifiers based on weighted fully-connected neural network (FCNN) and long short-term memory (LSTM) to facilitate dynamic graph classification via the learned spatial-temporal information. Evaluation on a large ABIDE resting-state functional magnetic resonance imaging (rs-fMRI) dataset shows that our method outperformed state-of-the-art methods in detecting altered FC in ASD. Dynamic FC analyses with DyGAE learned embeddings also reveal apparent group difference between ASD and healthy controls in network profiles and switching dynamics of brain states.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9898034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recent applications of pattern recognition techniques to brain connectome-based classification focus on static functional connectivity (FC) neglecting the dynamics of FC over time, and use input connectivity matrices on a regular Euclidean grid. We exploit the graph convolutional networks (GCNs) to learn irregular structural patterns in brain FC networks and propose extensions to capture dynamic changes in network topology. We develop a dynamic graph autoencoder (DyGAE)-based framework to leverage the time-varying topological structures of dynamic brain networks for identification of autism spectrum disorder (ASD). The framework combines a GCN-based DyGAE to encode individual-level dynamic networks into time-varying low-dimensional network embeddings, and classifiers based on weighted fully-connected neural network (FCNN) and long short-term memory (LSTM) to facilitate dynamic graph classification via the learned spatial-temporal information. Evaluation on a large ABIDE resting-state functional magnetic resonance imaging (rs-fMRI) dataset shows that our method outperformed state-of-the-art methods in detecting altered FC in ASD. Dynamic FC analyses with DyGAE learned embeddings also reveal apparent group difference between ASD and healthy controls in network profiles and switching dynamics of brain states.
基于图自编码器的动态脑网络嵌入式学习用于自闭症谱系障碍识别
模式识别技术在脑连接体分类中的最新应用主要集中在静态功能连接(FC)上,忽略了FC随时间的动态变化,并使用正则欧几里得网格上的输入连接矩阵。我们利用图卷积网络(GCNs)来学习大脑FC网络中的不规则结构模式,并提出扩展以捕获网络拓扑的动态变化。我们开发了一个基于动态图自编码器(DyGAE)的框架,以利用动态大脑网络的时变拓扑结构来识别自闭症谱系障碍(ASD)。该框架结合了基于gnn的DyGAE将个体级动态网络编码为时变低维网络嵌入,以及基于加权全连接神经网络(FCNN)和长短期记忆(LSTM)的分类器,通过学习到的时空信息实现动态图分类。对大型静息状态功能磁共振成像(rs-fMRI)数据集的评估表明,我们的方法在检测ASD中FC改变方面优于最先进的方法。DyGAE学习嵌入的动态FC分析还揭示了ASD和健康对照组在网络概况和脑状态切换动态方面的显著组间差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信