A Data-Driven Near-Optimization Approach for Smart Parking Management Platforms

Mingyan Bai, Shenghua Zhong, Pengyu Yan, Zhibin Chen, Zhixian Zhang
{"title":"A Data-Driven Near-Optimization Approach for Smart Parking Management Platforms","authors":"Mingyan Bai, Shenghua Zhong, Pengyu Yan, Zhibin Chen, Zhixian Zhang","doi":"10.1109/ICNSC52481.2021.9702219","DOIUrl":null,"url":null,"abstract":"This paper addresses an allocation optimization problem of parking slots in a real-time parking reservation platform in which parking demands randomly show up. For each decision period of a finite horizon, the reservation platform allocates the available parking slots at hand for the random demands with different types specified by the parking duration to maximize the total revenue over the whole horizon. This paper presents a real-time reservation framework and formulates the problem as a stochastic programming model, considering the different type demands with unknown probability distributions. We propose a data-driven near-optimization approach entitled a two-sample average approximation (2-SAA) to determine the allocation scheme over the horizon. In the 2-SAA approach, the confidence interval of the total revenue is established by the out-of-sample resampling method. The results of the numerical experiment validate the performance of the proposed 2-SAA algorithm.","PeriodicalId":129062,"journal":{"name":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC52481.2021.9702219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses an allocation optimization problem of parking slots in a real-time parking reservation platform in which parking demands randomly show up. For each decision period of a finite horizon, the reservation platform allocates the available parking slots at hand for the random demands with different types specified by the parking duration to maximize the total revenue over the whole horizon. This paper presents a real-time reservation framework and formulates the problem as a stochastic programming model, considering the different type demands with unknown probability distributions. We propose a data-driven near-optimization approach entitled a two-sample average approximation (2-SAA) to determine the allocation scheme over the horizon. In the 2-SAA approach, the confidence interval of the total revenue is established by the out-of-sample resampling method. The results of the numerical experiment validate the performance of the proposed 2-SAA algorithm.
基于数据驱动的智能停车管理平台近优化方法
本文研究了一个车位需求随机出现的实时预约平台中的车位分配优化问题。对于有限视界的每个决策时段,预约平台根据停车时长随机分配不同类型的需求,以使整个视界的总收益最大化。本文提出了一个实时预约框架,并将该问题表述为一个随机规划模型,考虑了不同类型需求的未知概率分布。我们提出了一种数据驱动的近似优化方法,称为双样本平均近似(2-SAA),以确定视界上的分配方案。在2-SAA方法中,总收入的置信区间是通过样本外重采样方法建立的。数值实验结果验证了所提2-SAA算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信