Monitoring and Identification of WiFi Devices for Internet of Things Security

Yongfei Zhang, Yun Lin, Z. Dou, Meiyu Wang, Wenwen Li
{"title":"Monitoring and Identification of WiFi Devices for Internet of Things Security","authors":"Yongfei Zhang, Yun Lin, Z. Dou, Meiyu Wang, Wenwen Li","doi":"10.1109/GCWkshps45667.2019.9024626","DOIUrl":null,"url":null,"abstract":"WiFi is the adhesive in the Internet of Things(IoT), and most wireless devices use WiFi to access the IoT. Monitorization and identification of access WiFi devices are particularly important for the security of the IoT, especially, sensitive areas. In this context, we propose a classification framework for WiFi devices based on their Power Spectral Density(PSD) and Permutation Entropy(PE) of the preamble signal. Four WLAN cards are under test to verify our method. And the K-NN classification was used. The experimental results show that the two methods have a recognition rate of more than 90% with SNR is -5 dB.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

WiFi is the adhesive in the Internet of Things(IoT), and most wireless devices use WiFi to access the IoT. Monitorization and identification of access WiFi devices are particularly important for the security of the IoT, especially, sensitive areas. In this context, we propose a classification framework for WiFi devices based on their Power Spectral Density(PSD) and Permutation Entropy(PE) of the preamble signal. Four WLAN cards are under test to verify our method. And the K-NN classification was used. The experimental results show that the two methods have a recognition rate of more than 90% with SNR is -5 dB.
面向物联网安全的WiFi设备监控与识别
WiFi是物联网(IoT)的粘合剂,大多数无线设备都使用WiFi接入物联网。监控和识别接入WiFi设备对于物联网的安全,特别是敏感区域的安全尤为重要。在此背景下,我们提出了一个基于前导信号的功率谱密度(PSD)和置换熵(PE)的WiFi设备分类框架。四个WLAN卡正在测试中,以验证我们的方法。采用K-NN分类。实验结果表明,两种方法的识别率均在90%以上,信噪比为-5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信