D. D. Shin, D. Heinz, Hyun-Keun Kwon, Yunhan Chen, T. Kenny
{"title":"Lateral diffusion doping of silicon for temperature compensation of MEMS resonators","authors":"D. D. Shin, D. Heinz, Hyun-Keun Kwon, Yunhan Chen, T. Kenny","doi":"10.1109/ISISS.2018.8358144","DOIUrl":null,"url":null,"abstract":"This paper reports the results of a diffusion doping-based method of controlling the temperature coefficient of frequency (TCf) of MEMS resonators. In this work, a suite of resonators from two different wafers — one with and one without diffusion doping — is characterized and compared. By diffusing dopants through exposed sidewalls of silicon resonators within an epitaxial polysilicon encapsulation process, this technique demonstrates a dramatic reduction in the resonator's frequency-temperature sensitivity, one of the significant disadvantages of silicon as a resonator material. Moreover, because thicker geometries are less affected by lateral diffusion, this method provides capability to independently manipulate frequency-temperature behaviors of different resonant systems fabricated on the same wafer.","PeriodicalId":237642,"journal":{"name":"2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISISS.2018.8358144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper reports the results of a diffusion doping-based method of controlling the temperature coefficient of frequency (TCf) of MEMS resonators. In this work, a suite of resonators from two different wafers — one with and one without diffusion doping — is characterized and compared. By diffusing dopants through exposed sidewalls of silicon resonators within an epitaxial polysilicon encapsulation process, this technique demonstrates a dramatic reduction in the resonator's frequency-temperature sensitivity, one of the significant disadvantages of silicon as a resonator material. Moreover, because thicker geometries are less affected by lateral diffusion, this method provides capability to independently manipulate frequency-temperature behaviors of different resonant systems fabricated on the same wafer.