Fuzzy Context Sensitive Thresholding Guided Bidirectional Self Organizing Neural Network (BDSONN): A Gray Scale Object Extractor

S. Bhattacharyya, P. Dutta, U. Maulik
{"title":"Fuzzy Context Sensitive Thresholding Guided Bidirectional Self Organizing Neural Network (BDSONN): A Gray Scale Object Extractor","authors":"S. Bhattacharyya, P. Dutta, U. Maulik","doi":"10.1109/ICISIP.2006.4286087","DOIUrl":null,"url":null,"abstract":"A three layer counter-propagating fully connected bidirectional self organizing neural network (BDSONN) architecture comprising an input layer, an intermediate layer and an output layer of fully connected neurons, driven by the fuzzy membership values of the image scene and efficient for gray scale object extraction from a multiscale image scene is presented in this article. The neurons at each of the input and intermediate layers of the network are connected to the next layer neurons using a neighborhood based topology. The output layer neurons are connected to the intermediate layer neurons forming a counter-propagating structure. The proposed architecture, guided by a multilevel sigmoidal activation function, uses fuzzy image context based thresholding information for self-organizing multiscale input information into different extracted scales of gray by means of counter-propagation of network states. Application of the proposed architecture for gray scale object extraction is demonstrated using real life gray scale images.","PeriodicalId":187104,"journal":{"name":"2006 Fourth International Conference on Intelligent Sensing and Information Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Fourth International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2006.4286087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A three layer counter-propagating fully connected bidirectional self organizing neural network (BDSONN) architecture comprising an input layer, an intermediate layer and an output layer of fully connected neurons, driven by the fuzzy membership values of the image scene and efficient for gray scale object extraction from a multiscale image scene is presented in this article. The neurons at each of the input and intermediate layers of the network are connected to the next layer neurons using a neighborhood based topology. The output layer neurons are connected to the intermediate layer neurons forming a counter-propagating structure. The proposed architecture, guided by a multilevel sigmoidal activation function, uses fuzzy image context based thresholding information for self-organizing multiscale input information into different extracted scales of gray by means of counter-propagation of network states. Application of the proposed architecture for gray scale object extraction is demonstrated using real life gray scale images.
模糊上下文敏感阈值引导双向自组织神经网络(BDSONN):一种灰度目标提取器
本文提出了一种基于图像场景的模糊隶属度驱动的三层反传播全连接双向自组织神经网络(BDSONN)结构,该结构由全连接神经元的输入层、中间层和输出层组成,能够有效地从多尺度图像场景中提取灰度目标。网络的每个输入层和中间层的神经元使用基于邻域的拓扑连接到下一层神经元。输出层神经元与中间层神经元连接,形成反传播结构。该结构在多级s型激活函数的指导下,利用基于模糊图像上下文的阈值信息,通过网络状态的反传播,将多尺度输入信息自组织成不同提取尺度的灰度。本文以真实的灰度图像为例,演示了该结构在灰度目标提取中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信