Design of a VCO for rubidium atomic frequency standard

Lei Ji, Liang Tang, Xin-wei Li
{"title":"Design of a VCO for rubidium atomic frequency standard","authors":"Lei Ji, Liang Tang, Xin-wei Li","doi":"10.1109/SPAWDA.2014.6998546","DOIUrl":null,"url":null,"abstract":"The rubidium atomic clock based on coherent population trapping (CPT) has advantages of low power consumption, small size and quick start-up. It is potential to be applied in many fields of science. The rubidium atomic clock requires a microwave signal source whose center frequency is 3.417GHz (half of the rubidium atomic hyperfine energy difference) with the ability to be tuned during a certain frequency range. A transistor with high cut-off frequency and low noise figure is selected in this design to constitute the amplifier circuit. At the emitter of the transistor, a varactor and other components are used to make up the resonance circuit. The circuit parameters are optimized by using the negative resistance analysis method to meet the power and phase noise requirements. Finally, a voltage controlled oscillator (VCO) based on the rubidium atomic frequency standard is designed. The frequency is 3.417GHz, the phase noise is -53dBc/Hz@1kHz, and the output power is about 1.4dBm. By adjusting the reverse DC bias voltage of the varactor between 0V and 2.5V, the output frequency varies about 100MHz.","PeriodicalId":412736,"journal":{"name":"Proceedings of the 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA.2014.6998546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rubidium atomic clock based on coherent population trapping (CPT) has advantages of low power consumption, small size and quick start-up. It is potential to be applied in many fields of science. The rubidium atomic clock requires a microwave signal source whose center frequency is 3.417GHz (half of the rubidium atomic hyperfine energy difference) with the ability to be tuned during a certain frequency range. A transistor with high cut-off frequency and low noise figure is selected in this design to constitute the amplifier circuit. At the emitter of the transistor, a varactor and other components are used to make up the resonance circuit. The circuit parameters are optimized by using the negative resistance analysis method to meet the power and phase noise requirements. Finally, a voltage controlled oscillator (VCO) based on the rubidium atomic frequency standard is designed. The frequency is 3.417GHz, the phase noise is -53dBc/Hz@1kHz, and the output power is about 1.4dBm. By adjusting the reverse DC bias voltage of the varactor between 0V and 2.5V, the output frequency varies about 100MHz.
铷原子频标压控振荡器的设计
基于相干族捕获(CPT)的铷原子钟具有功耗低、体积小、启动快等优点。它在许多科学领域都有应用的潜力。铷原子钟需要一个中心频率为3.417GHz(铷原子超精细能量差的一半)并能在一定频率范围内调谐的微波信号源。本设计选用截止频率高、噪声系数低的晶体管构成放大电路。在晶体管的发射极,一个变容管和其他元件被用来组成谐振电路。采用负电阻分析方法优化电路参数,满足功率和相位噪声要求。最后,设计了基于铷原子频率标准的压控振荡器(VCO)。频率为3.417GHz,相位噪声为-53dBc/Hz@1kHz,输出功率约1.4dBm。通过调节变容器的反向直流偏置电压在0V到2.5V之间,输出频率变化约100MHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信