Portfolio Management by Normal Mean-Variance Mixture Distributions

S. Banihashemi
{"title":"Portfolio Management by Normal Mean-Variance Mixture Distributions","authors":"S. Banihashemi","doi":"10.1109/ICDSBA48748.2019.00052","DOIUrl":null,"url":null,"abstract":"According to the empirical evidence, financial returns show leptokurtosis, skewness and heavy-tailness. Regarding this behavior, we apply normal mixture mean variance distributions for portfolio management and allocating best weights for portfolio optimization and efficient frontiers. These distributions are appropriate for portfolio optimization and have a natural multivariate that consists of NIG, VG, NTS, GH and skewed t. Conditional Value-at-Risk (CVaR) is utilized as a measure of risk to evaluate the level of risk and simulated by Monte Carlo method. If we do not have closed density function of distribution, for example NTS distribution, we can use characteristic function with Fourier transformation to compute CVaR and portfolio modeling. Finally, real data in Iran stock market are given to illustrate the effectiveness our model by skewed t distribution.","PeriodicalId":382429,"journal":{"name":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA48748.2019.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the empirical evidence, financial returns show leptokurtosis, skewness and heavy-tailness. Regarding this behavior, we apply normal mixture mean variance distributions for portfolio management and allocating best weights for portfolio optimization and efficient frontiers. These distributions are appropriate for portfolio optimization and have a natural multivariate that consists of NIG, VG, NTS, GH and skewed t. Conditional Value-at-Risk (CVaR) is utilized as a measure of risk to evaluate the level of risk and simulated by Monte Carlo method. If we do not have closed density function of distribution, for example NTS distribution, we can use characteristic function with Fourier transformation to compute CVaR and portfolio modeling. Finally, real data in Iran stock market are given to illustrate the effectiveness our model by skewed t distribution.
正态均值-方差混合分布的投资组合管理
实证结果表明,金融收益表现出细峰态、偏态和重尾态。针对这种行为,我们将正态混合均值方差分布应用于投资组合管理,并为投资组合优化和有效边界分配最佳权重。这些分布适合于投资组合优化,并且具有由NIG, VG, NTS, GH和倾斜t组成的自然多元。条件风险值(CVaR)被用作评估风险水平的风险度量,并通过蒙特卡罗方法进行模拟。如果我们没有封闭的密度分布函数,例如NTS分布,我们可以使用特征函数和傅里叶变换来计算CVaR和投资组合建模。最后,以伊朗股市的实际数据为例,通过偏态t分布验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信