Construction of regression experiment optimal plan using parallel computing

L. Vladimirova, I. Fatyanova
{"title":"Construction of regression experiment optimal plan using parallel computing","authors":"L. Vladimirova, I. Fatyanova","doi":"10.1109/SCP.2015.7342140","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the classical linear regression of the second order, the unknown parameters are usually evaluated by the method of least squares. The distribution of the error of parameter vector estimate depends on the plan choice. This choice is carried out to minimize the generalized variance of unknown parameters estimate or to maximize the information matrix determinant. To solve this extremal problem the random search is used on the basis of on the normal distribution. This method takes into account the information on the objective function by the use of covariance matrix. This method is iterative; at each iteration the search domain is gradually contracted round the point recognized to be most promising at previous iteration. So we have self-training method (named the method with a “memory”). The algorithm is simple and can be used for large dimension of search domain. In addition, this method is suitable for parallelization by distributing of numerical statistical tests among the processes [1, 2].","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we consider the classical linear regression of the second order, the unknown parameters are usually evaluated by the method of least squares. The distribution of the error of parameter vector estimate depends on the plan choice. This choice is carried out to minimize the generalized variance of unknown parameters estimate or to maximize the information matrix determinant. To solve this extremal problem the random search is used on the basis of on the normal distribution. This method takes into account the information on the objective function by the use of covariance matrix. This method is iterative; at each iteration the search domain is gradually contracted round the point recognized to be most promising at previous iteration. So we have self-training method (named the method with a “memory”). The algorithm is simple and can be used for large dimension of search domain. In addition, this method is suitable for parallelization by distributing of numerical statistical tests among the processes [1, 2].
用并行计算构建回归实验最优方案
本文考虑经典二阶线性回归,未知参数通常用最小二乘法求值。参数向量估计误差的分布取决于方案的选择。这种选择是为了最小化未知参数估计的广义方差或最大化信息矩阵行列式。为了解决这一极值问题,采用了基于正态分布的随机搜索方法。该方法利用协方差矩阵来考虑目标函数上的信息。这种方法是迭代的;在每一次迭代中,搜索域都是围绕在前一次迭代中被识别为最有希望的点逐渐收缩的。所以我们有自我训练的方法(命名为“记忆”的方法)。该算法简单,可用于大维度的搜索域。此外,该方法通过在进程之间分布数值统计试验,适合于并行化[1,2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信