Handwritten Devnagari consonants recognition using MLPNN with five fold cross validation

D. Rojatkar, K. D. Chinchkhede, G. Sarate
{"title":"Handwritten Devnagari consonants recognition using MLPNN with five fold cross validation","authors":"D. Rojatkar, K. D. Chinchkhede, G. Sarate","doi":"10.1109/ICCPCT.2013.6528992","DOIUrl":null,"url":null,"abstract":"This research work investigates design and analysis of an optimal classifier for the categorization of handwritten Marathi consonant characters of Devnagari script using a single hidden layer feed-forward neural network with five fold cross validation. Each neural network is trained three times by varying neurons in hidden layer from 64 to 128 in steps of 16. Scrupulous experimentation around seventy five MLPs shows the average classification accuracy is above 97% for all 32 classes. The best network with 128 neurons is further analyzed on account of confusion matrix, reveals the greater details for individual classes. Overall, classification accuracy on training, validation, test and combined dataset is 99.58%, 97.88%, 97.62% and 99.05% respectively on the total dataset size of 8224 samples distributed uniformly within 32 classes of typical Devnagari consonants.","PeriodicalId":258978,"journal":{"name":"2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2013.6528992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This research work investigates design and analysis of an optimal classifier for the categorization of handwritten Marathi consonant characters of Devnagari script using a single hidden layer feed-forward neural network with five fold cross validation. Each neural network is trained three times by varying neurons in hidden layer from 64 to 128 in steps of 16. Scrupulous experimentation around seventy five MLPs shows the average classification accuracy is above 97% for all 32 classes. The best network with 128 neurons is further analyzed on account of confusion matrix, reveals the greater details for individual classes. Overall, classification accuracy on training, validation, test and combined dataset is 99.58%, 97.88%, 97.62% and 99.05% respectively on the total dataset size of 8224 samples distributed uniformly within 32 classes of typical Devnagari consonants.
手写Devnagari辅音识别使用MLPNN与五倍交叉验证
本研究使用具有五重交叉验证的单隐层前馈神经网络设计和分析了Devnagari手写体马拉地语辅音字符的最佳分类器。每个神经网络通过将隐藏层中的神经元从64到128进行3次训练,每步16次。对75个mlp进行仔细的实验表明,所有32个类别的平均分类准确率都在97%以上。利用混淆矩阵进一步分析了128个神经元的最佳网络,揭示了单个类的更多细节。总体而言,在32类典型Devnagari辅音中均匀分布的8224个样本的总数据集规模上,训练、验证、测试和组合数据集的分类准确率分别为99.58%、97.88%、97.62%和99.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信