iNNformant: Boundary Samples as Telltale Watermarks

Alexander Schlögl, Tobias Kupek, Rainer Böhme
{"title":"iNNformant: Boundary Samples as Telltale Watermarks","authors":"Alexander Schlögl, Tobias Kupek, Rainer Böhme","doi":"10.1145/3437880.3460411","DOIUrl":null,"url":null,"abstract":"Boundary samples are special inputs to artificial neural networks crafted to identify the execution environment used for inference by the resulting output label. The paper presents and evaluates algorithms to generate transparent boundary samples. Transparency refers to a small perceptual distortion of the host signal (i.e., a natural input sample). For two established image classifiers, ResNet on FMNIST and CIFAR10, we show that it is possible to generate sets of boundary samples which can identify any of four tested microarchitectures. These sets can be built to not contain any sample with a worse peak signal-to-noise ratio than 70dB. We analyze the relationship between search complexity and resulting transparency.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Boundary samples are special inputs to artificial neural networks crafted to identify the execution environment used for inference by the resulting output label. The paper presents and evaluates algorithms to generate transparent boundary samples. Transparency refers to a small perceptual distortion of the host signal (i.e., a natural input sample). For two established image classifiers, ResNet on FMNIST and CIFAR10, we show that it is possible to generate sets of boundary samples which can identify any of four tested microarchitectures. These sets can be built to not contain any sample with a worse peak signal-to-noise ratio than 70dB. We analyze the relationship between search complexity and resulting transparency.
告密者:边界样本作为泄密水印
边界样本是人工神经网络的特殊输入,通过生成的输出标签来识别用于推理的执行环境。本文提出并评价了生成透明边界样本的算法。透明度是指宿主信号(即自然输入样本)的小感知失真。对于两个已建立的图像分类器,FMNIST上的ResNet和CIFAR10,我们表明可以生成可以识别四种被测试微架构中的任何一种的边界样本集。这些组可以构建为不包含任何峰值信噪比低于70dB的样本。我们分析了搜索复杂度和结果透明度之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信