Modeling and querying trajectories using Neo4j spatial and TimeTree for carpool matching

Fuat Bakkal, S. Eken, Nurullah Samed Savas, A. Sayar
{"title":"Modeling and querying trajectories using Neo4j spatial and TimeTree for carpool matching","authors":"Fuat Bakkal, S. Eken, Nurullah Samed Savas, A. Sayar","doi":"10.1109/INISTA.2017.8001160","DOIUrl":null,"url":null,"abstract":"With the the exponential growth of location aware devices, analysis of human movements has been the subject of several studies. Problems related to urban mobility such as vehicle congestion are serious concern in cities. Carpooling is one of the solutions to soften congestion problem. This paper presents a novel matching method for carpooling. Trajectories are firstly modeled using Neo4j spatial and Neo4j TimeTree libraries. Then, temporal and locational filtering steps are operated. We extensively evaluate the efficiency and efficacy of the proposed system on Geolife trajectory dataset.","PeriodicalId":314687,"journal":{"name":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2017.8001160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the the exponential growth of location aware devices, analysis of human movements has been the subject of several studies. Problems related to urban mobility such as vehicle congestion are serious concern in cities. Carpooling is one of the solutions to soften congestion problem. This paper presents a novel matching method for carpooling. Trajectories are firstly modeled using Neo4j spatial and Neo4j TimeTree libraries. Then, temporal and locational filtering steps are operated. We extensively evaluate the efficiency and efficacy of the proposed system on Geolife trajectory dataset.
使用Neo4j空间和时间树为拼车匹配建模和查询轨迹
随着位置感知设备的指数级增长,对人类运动的分析已经成为许多研究的主题。与城市流动性相关的问题,如车辆拥堵,是城市严重关注的问题。拼车是缓解交通拥堵问题的解决方案之一。提出了一种新的拼车匹配方法。轨迹首先使用Neo4j空间库和Neo4j时间库建模。然后,进行时间滤波和位置滤波。我们广泛地评估了该系统在地球生命轨迹数据集上的效率和效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信