On the Malware Detection Problem: Challenges & Novel Approaches

Marcus Botacin, P. De Geus, A. Grégio
{"title":"On the Malware Detection Problem: Challenges & Novel Approaches","authors":"Marcus Botacin, P. De Geus, A. Grégio","doi":"10.5753/sbseg_estendido.2022.224746","DOIUrl":null,"url":null,"abstract":"Many solutions to detect malware have been proposed over time, but effective and efficient malware detection still remains an open problem. In this work, I take a look at some malware detection challenges and pitfalls to contribute towards increasing system’s malware detection capabilities. I propose a new approach to tackle malware research in a practical but still scientific manner and leverage this approach to investigate four issues: (i) the need for understanding context to allow proper detection of localized threats; (ii) the need for developing better metrics for AntiVirus (AV) evaluation; (iii) the feasibility of leveraging hardware-software collaboration for efficient AV implementation, and (iv) the need for predicting future threats to allow faster incident responses.","PeriodicalId":122948,"journal":{"name":"Anais Estendidos do XXII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg Estendido 2022)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg Estendido 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg_estendido.2022.224746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many solutions to detect malware have been proposed over time, but effective and efficient malware detection still remains an open problem. In this work, I take a look at some malware detection challenges and pitfalls to contribute towards increasing system’s malware detection capabilities. I propose a new approach to tackle malware research in a practical but still scientific manner and leverage this approach to investigate four issues: (i) the need for understanding context to allow proper detection of localized threats; (ii) the need for developing better metrics for AntiVirus (AV) evaluation; (iii) the feasibility of leveraging hardware-software collaboration for efficient AV implementation, and (iv) the need for predicting future threats to allow faster incident responses.
恶意软件检测问题:挑战与新方法
随着时间的推移,已经提出了许多检测恶意软件的解决方案,但有效和高效的恶意软件检测仍然是一个开放的问题。在这项工作中,我将介绍一些恶意软件检测的挑战和陷阱,以帮助提高系统的恶意软件检测能力。我提出了一种新的方法,以一种实用但仍然科学的方式来解决恶意软件的研究,并利用这种方法来调查四个问题:(I)需要理解上下文,以便正确检测局部威胁;(ii)开发更好的反病毒(AV)评估指标的需求;(iii)利用硬件软件协作高效实施自动驾驶的可行性,以及(iv)预测未来威胁的需求,以便更快地响应事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信