On Fibonacci and Lucas Vectors and Quaternions

O. Kaya, M. Önder
{"title":"On Fibonacci and Lucas Vectors and Quaternions","authors":"O. Kaya, M. Önder","doi":"10.13189/ujam.2018.060502","DOIUrl":null,"url":null,"abstract":"In this study, first we investigate the Fibonacci vectors, Lucas vectors and their vector products considering two Fibonacci vectors, two Lucas vectors and one of each vector. We give some theorems for the mentioned vector products and then we give the conditions for such vectors to be perpendicular or parallel. We also introduce the area formulas for the parallelograms constructed by Fibonacci and Lucas vectors with respect to Fibonacci and Lucas numbers. Moreover, we determine some formulas for the cosine and sine functions of the angles between two Fibonacci vectors, two Lucas vectors and lastly a Fibonacci vector and a Lucas vector. Finally, we investigate the Fibonacci quaternions and Lucas quaternions. We give some corollaries regarding the quaternion products of two Fibonacci quaternions, two Lucas quaternions and one of each quaternion. We conclude with the result that the quaternion product of such quaternions is neither a Fibonacci quaternion nor a Lucas quaternion.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujam.2018.060502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, first we investigate the Fibonacci vectors, Lucas vectors and their vector products considering two Fibonacci vectors, two Lucas vectors and one of each vector. We give some theorems for the mentioned vector products and then we give the conditions for such vectors to be perpendicular or parallel. We also introduce the area formulas for the parallelograms constructed by Fibonacci and Lucas vectors with respect to Fibonacci and Lucas numbers. Moreover, we determine some formulas for the cosine and sine functions of the angles between two Fibonacci vectors, two Lucas vectors and lastly a Fibonacci vector and a Lucas vector. Finally, we investigate the Fibonacci quaternions and Lucas quaternions. We give some corollaries regarding the quaternion products of two Fibonacci quaternions, two Lucas quaternions and one of each quaternion. We conclude with the result that the quaternion product of such quaternions is neither a Fibonacci quaternion nor a Lucas quaternion.
论斐波那契和卢卡斯向量和四元数
在本研究中,我们首先研究了斐波那契向量、卢卡斯向量及其向量积,考虑了两个斐波那契向量、两个卢卡斯向量和每个向量中的一个。我们给出了上述向量积的一些定理,然后给出了这些向量垂直或平行的条件。我们还介绍了由斐波那契和卢卡斯向量构成的平行四边形相对于斐波那契和卢卡斯数的面积公式。此外,我们还确定了两个Fibonacci向量、两个Lucas向量以及最后一个Fibonacci向量和一个Lucas向量之间夹角的余弦和正弦函数的一些公式。最后,我们研究了斐波那契四元数和卢卡斯四元数。我们给出了两个Fibonacci四元数、两个Lucas四元数和每个四元数的一个四元数积的一些推论。我们得出结论,这些四元数的四元数乘积既不是斐波那契四元数,也不是卢卡斯四元数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信