{"title":"On Fibonacci and Lucas Vectors and Quaternions","authors":"O. Kaya, M. Önder","doi":"10.13189/ujam.2018.060502","DOIUrl":null,"url":null,"abstract":"In this study, first we investigate the Fibonacci vectors, Lucas vectors and their vector products considering two Fibonacci vectors, two Lucas vectors and one of each vector. We give some theorems for the mentioned vector products and then we give the conditions for such vectors to be perpendicular or parallel. We also introduce the area formulas for the parallelograms constructed by Fibonacci and Lucas vectors with respect to Fibonacci and Lucas numbers. Moreover, we determine some formulas for the cosine and sine functions of the angles between two Fibonacci vectors, two Lucas vectors and lastly a Fibonacci vector and a Lucas vector. Finally, we investigate the Fibonacci quaternions and Lucas quaternions. We give some corollaries regarding the quaternion products of two Fibonacci quaternions, two Lucas quaternions and one of each quaternion. We conclude with the result that the quaternion product of such quaternions is neither a Fibonacci quaternion nor a Lucas quaternion.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujam.2018.060502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, first we investigate the Fibonacci vectors, Lucas vectors and their vector products considering two Fibonacci vectors, two Lucas vectors and one of each vector. We give some theorems for the mentioned vector products and then we give the conditions for such vectors to be perpendicular or parallel. We also introduce the area formulas for the parallelograms constructed by Fibonacci and Lucas vectors with respect to Fibonacci and Lucas numbers. Moreover, we determine some formulas for the cosine and sine functions of the angles between two Fibonacci vectors, two Lucas vectors and lastly a Fibonacci vector and a Lucas vector. Finally, we investigate the Fibonacci quaternions and Lucas quaternions. We give some corollaries regarding the quaternion products of two Fibonacci quaternions, two Lucas quaternions and one of each quaternion. We conclude with the result that the quaternion product of such quaternions is neither a Fibonacci quaternion nor a Lucas quaternion.