Analysis on Parameter Effect for Solar Radiation Prediction Modeling using NNARX

Mohd Rizman Sultan Mohd, J. Johari, F. Ruslan, Noorfadzli Abdul Razak, Salmiah Ahmad, A. S. Mohd Shah
{"title":"Analysis on Parameter Effect for Solar Radiation Prediction Modeling using NNARX","authors":"Mohd Rizman Sultan Mohd, J. Johari, F. Ruslan, Noorfadzli Abdul Razak, Salmiah Ahmad, A. S. Mohd Shah","doi":"10.1109/I2CACIS52118.2021.9495852","DOIUrl":null,"url":null,"abstract":"The radiant energy from the sun is defined as solar radiation. It had been discovered as a renewable energy which can provide electricity supplies using a photovoltaic system. Before developing the system, a preliminary test must be carried out to perform the analysis of solar energy potential in that specific area. This preliminary test is known as a modeling technique. The technique will use the related parameters as an input to predict the solar radiation value. Since there are multiple parameters used for solar radiation prediction model development, there had been multiple attempts on using only certain parameters to produce predictions for solar radiation value. This paper will review and further analyzed several works presented by the previous studies on developing solar radiation prediction models using various parameters with their results. With the findings, the implementation of the Neural Network Autoregressive Model with Exogenous Input (NNARX) on solar radiation prediction carried out for the different input parameter configurations. Based on the results, it shows that the solar radiation prediction model development using more input parameters produced the best prediction performance with the R2 value of 0.9329.","PeriodicalId":210770,"journal":{"name":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS52118.2021.9495852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The radiant energy from the sun is defined as solar radiation. It had been discovered as a renewable energy which can provide electricity supplies using a photovoltaic system. Before developing the system, a preliminary test must be carried out to perform the analysis of solar energy potential in that specific area. This preliminary test is known as a modeling technique. The technique will use the related parameters as an input to predict the solar radiation value. Since there are multiple parameters used for solar radiation prediction model development, there had been multiple attempts on using only certain parameters to produce predictions for solar radiation value. This paper will review and further analyzed several works presented by the previous studies on developing solar radiation prediction models using various parameters with their results. With the findings, the implementation of the Neural Network Autoregressive Model with Exogenous Input (NNARX) on solar radiation prediction carried out for the different input parameter configurations. Based on the results, it shows that the solar radiation prediction model development using more input parameters produced the best prediction performance with the R2 value of 0.9329.
基于NNARX的太阳辐射预报建模参数效应分析
来自太阳的辐射能被定义为太阳辐射。它被发现是一种可再生能源,可以使用光伏系统提供电力供应。在开发该系统之前,必须进行初步测试,对该特定区域的太阳能潜力进行分析。这种初步测试被称为建模技术。该技术将使用相关参数作为输入来预测太阳辐射值。由于太阳辐射预测模型的开发使用了多个参数,人们曾多次尝试仅使用某些参数来预测太阳辐射值。本文将回顾并进一步分析前人在利用各种参数建立太阳辐射预测模型方面所做的工作及其结果。在此基础上,应用外生输入神经网络自回归模型(NNARX)对不同输入参数配置下的太阳辐射进行了预测。结果表明,使用更多输入参数开发的太阳辐射预测模型预测效果最好,R2值为0.9329。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信