J. Laska, W. F. Bradley, T. Rondeau, K. Nolan, B. Vigoda
{"title":"Compressive sensing for dynamic spectrum access networks: Techniques and tradeoffs","authors":"J. Laska, W. F. Bradley, T. Rondeau, K. Nolan, B. Vigoda","doi":"10.1109/DYSPAN.2011.5936202","DOIUrl":null,"url":null,"abstract":"We explore the practical costs and benefits of CS for dynamic spectrum access (DSA) networks. Firstly, we review several fast and practical techniques for energy detection without full reconstruction and provide theoretical guarantees. We also define practical metrics to measure the performance of these techniques. Secondly, we perform comprehensive experiments comparing the techniques on real signals captured over the air. Our results show that we can significantly compressively acquire the signal while still accurately determining spectral occupancy.","PeriodicalId":119856,"journal":{"name":"2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DYSPAN.2011.5936202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
We explore the practical costs and benefits of CS for dynamic spectrum access (DSA) networks. Firstly, we review several fast and practical techniques for energy detection without full reconstruction and provide theoretical guarantees. We also define practical metrics to measure the performance of these techniques. Secondly, we perform comprehensive experiments comparing the techniques on real signals captured over the air. Our results show that we can significantly compressively acquire the signal while still accurately determining spectral occupancy.