Towards Remote Verifiable Computation without Digital Secrets

ASHES@CCS Pub Date : 1900-01-01 DOI:10.1145/3560834.3563762
Marten van Dijk
{"title":"Towards Remote Verifiable Computation without Digital Secrets","authors":"Marten van Dijk","doi":"10.1145/3560834.3563762","DOIUrl":null,"url":null,"abstract":"The development of secure processor architecture technology has seen many challenges. It turns out difficult to implement efficient resource sharing and at the same time eliminate or protect against side channels as a result of shared caches and other buffers. For this reason, implemented hardware isolation cannot provide confidential computing (as of yet). Nevertheless, the hardware isolation for access control as implemented by micro code and added circuitry cannot be circumvented and this allows for verifiable computation. However, even though computations can be isolated in enclaves, how can we provide remote attestation of computed output? Remote attestation requires digital secrets which may leak due to side channels. We show two puzzle pieces which together can be used to implement remote attestation without secure digital computation or digital secrets: We use a strong PUF for masking \"session signing keys' and we use these in a new one-time signature primitive. In essence, computing a signature for an output boils down to directly reading out a signature from unmasked digital storage.","PeriodicalId":181179,"journal":{"name":"ASHES@CCS","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASHES@CCS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3560834.3563762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of secure processor architecture technology has seen many challenges. It turns out difficult to implement efficient resource sharing and at the same time eliminate or protect against side channels as a result of shared caches and other buffers. For this reason, implemented hardware isolation cannot provide confidential computing (as of yet). Nevertheless, the hardware isolation for access control as implemented by micro code and added circuitry cannot be circumvented and this allows for verifiable computation. However, even though computations can be isolated in enclaves, how can we provide remote attestation of computed output? Remote attestation requires digital secrets which may leak due to side channels. We show two puzzle pieces which together can be used to implement remote attestation without secure digital computation or digital secrets: We use a strong PUF for masking "session signing keys' and we use these in a new one-time signature primitive. In essence, computing a signature for an output boils down to directly reading out a signature from unmasked digital storage.
无数字秘密的远程可验证计算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信