BINOMIAL ARMA COUNT SERIES FROM RENEWAL PROCESSES

Sergiy Koshkin, Yunwei Cui
{"title":"BINOMIAL ARMA COUNT SERIES FROM RENEWAL PROCESSES","authors":"Sergiy Koshkin, Yunwei Cui","doi":"10.7151/DMPS.1140","DOIUrl":null,"url":null,"abstract":"This paper describes a new method for generating stationary integervalued time series from renewal processes. We prove that if the lifetime distribution of renewal processes is nonlattice and the probability generating function is rational, then the generated time series satisfy causal and invertible ARMA type stochastic dierence equations. The result provides an easy method for generating integer-valued time series with ARMA type autocovariance functions. Examples of generating binomial ARMA(p;p 1) series from lifetime distributions with constant hazard rates after lag p are given as an illustration.","PeriodicalId":194257,"journal":{"name":"Discussiones Mathematicae Probability and Statistics","volume":"750 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/DMPS.1140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a new method for generating stationary integervalued time series from renewal processes. We prove that if the lifetime distribution of renewal processes is nonlattice and the probability generating function is rational, then the generated time series satisfy causal and invertible ARMA type stochastic dierence equations. The result provides an easy method for generating integer-valued time series with ARMA type autocovariance functions. Examples of generating binomial ARMA(p;p 1) series from lifetime distributions with constant hazard rates after lag p are given as an illustration.
更新过程中的二项式武装计数序列
本文提出了一种从更新过程生成平稳整值时间序列的新方法。证明了如果更新过程的寿命分布是非格的,且概率生成函数是有理的,则生成的时间序列满足因果可逆的ARMA型随机差分方程。该结果为生成具有ARMA型自协方差函数的整数值时间序列提供了一种简便的方法。给出了在滞后p后具有恒定危险率的寿命分布生成二项ARMA(p;p 1)序列的例子作为说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信