A distributed learning architecture for big imaging problems in astrophysics

A. Panousopoulou, S. Farrens, Yiannis Mastorakis, Jean-Luc Starck, P. Tsakalides
{"title":"A distributed learning architecture for big imaging problems in astrophysics","authors":"A. Panousopoulou, S. Farrens, Yiannis Mastorakis, Jean-Luc Starck, P. Tsakalides","doi":"10.23919/EUSIPCO.2017.8081447","DOIUrl":null,"url":null,"abstract":"Future challenges in Big Imaging problems will require that traditional, \"black-box\" machine learning methods, be revisited from the perspective of ongoing efforts in distributed computing. This paper proposes a distributed architecture for astrophysical imagery, which exploits the Apache Spark framework for the efficient parallelization of the learning problem at hand. The use case is related to the challenging problem of deconvolving a space variant point spread function from noisy galaxy images. We conduct benchmark studies considering relevant datasets and analyze the efficacy of the herein developed parallelization approaches. The experimental results report 58% improvement in time response terms against the conventional computing solutions, while useful insights into the computational trade-offs and the limitations of Spark are extracted.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Future challenges in Big Imaging problems will require that traditional, "black-box" machine learning methods, be revisited from the perspective of ongoing efforts in distributed computing. This paper proposes a distributed architecture for astrophysical imagery, which exploits the Apache Spark framework for the efficient parallelization of the learning problem at hand. The use case is related to the challenging problem of deconvolving a space variant point spread function from noisy galaxy images. We conduct benchmark studies considering relevant datasets and analyze the efficacy of the herein developed parallelization approaches. The experimental results report 58% improvement in time response terms against the conventional computing solutions, while useful insights into the computational trade-offs and the limitations of Spark are extracted.
天体物理学中大型成像问题的分布式学习架构
大成像问题的未来挑战将需要从分布式计算的角度重新审视传统的“黑箱”机器学习方法。本文提出了一种天体物理图像的分布式架构,该架构利用Apache Spark框架对手头的学习问题进行高效并行化。该用例涉及到从有噪声的星系图像中解卷积空间变点扩展函数的挑战性问题。考虑相关数据集,我们进行了基准研究,并分析了本文开发的并行化方法的有效性。实验结果表明,与传统计算解决方案相比,时间响应项提高了58%,同时提取了对计算权衡和Spark局限性的有用见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信