Soluções Numéricas de Equações Diferenciais com Redes Neurais Artificiais

José Miguel Aroztegui, T. J. Machado
{"title":"Soluções Numéricas de Equações Diferenciais com Redes Neurais Artificiais","authors":"José Miguel Aroztegui, T. J. Machado","doi":"10.14295/vetor.v31i2.13793","DOIUrl":null,"url":null,"abstract":"Neste artigo, vamos estudar uma forma de resolver numericamente equações diferenciais utilizando redes neurais. Basicamente, reescrevemos a equação diferencial como um problema de otimização, onde os parâmetros associados à rede neural são otimizados. A proposta deste trabalho apresentada aqui constitui uma variação da formulação introduzida por Lagaris et al. [1], diferenciando-se principalmente na forma de construção da solução aproximada. Apesar de lidarmos apenas com equações diferenciais ordinárias de primeira e segunda ordens, os resultados numéricos mostram a eficiência do método proposto. Além disso, ele possui bastante potencial, devido a quantidade de equações diferenciais e aplicações nas quais ele pode ser utilizado.","PeriodicalId":258655,"journal":{"name":"VETOR - Revista de Ciências Exatas e Engenharias","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VETOR - Revista de Ciências Exatas e Engenharias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14295/vetor.v31i2.13793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neste artigo, vamos estudar uma forma de resolver numericamente equações diferenciais utilizando redes neurais. Basicamente, reescrevemos a equação diferencial como um problema de otimização, onde os parâmetros associados à rede neural são otimizados. A proposta deste trabalho apresentada aqui constitui uma variação da formulação introduzida por Lagaris et al. [1], diferenciando-se principalmente na forma de construção da solução aproximada. Apesar de lidarmos apenas com equações diferenciais ordinárias de primeira e segunda ordens, os resultados numéricos mostram a eficiência do método proposto. Além disso, ele possui bastante potencial, devido a quantidade de equações diferenciais e aplicações nas quais ele pode ser utilizado.
人工神经网络微分方程的数值解
在本文中,我们将研究一种利用神经网络数值求解微分方程的方法。基本上,我们将微分方程改写为一个优化问题,其中与神经网络相关的参数得到优化。本文提出的建议是Lagaris等人[1]提出的公式的变体,主要不同于近似解的构造形式。虽然我们只处理一阶和二阶常微分方程,但数值结果表明了该方法的有效性。此外,由于微分方程的数量和它可以使用的应用,它有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信