“Sharing Private” Multi-task Learning for Petrophysical Parameters Prediction with Logs

R. Shao, L. Xiao, G. Liao
{"title":"“Sharing Private” Multi-task Learning for Petrophysical Parameters Prediction with Logs","authors":"R. Shao, L. Xiao, G. Liao","doi":"10.3997/2214-4609.202112714","DOIUrl":null,"url":null,"abstract":"Using neural network to map the relation between logging data and petrophysical parameters has been studied actively in recent years (Korjani, 2016). The results show that neural network can predict petrophysical parameters based on logging data with higher efficiency and accuracy than traditional model-driven methods (Korjani, 2016). The existing study, however, single predict neural network were used, that is, for a neural network one petrophysical parameter can be predicted, such as porosity (POR) or water saturation (SW) with a set of logging data. We propose a multi-task machine learning method for petrophysical parameter prediction with logs, which can improve the efficiency, simplify the process and reduce the mean absolute error compared with single predict neural network.","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202112714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using neural network to map the relation between logging data and petrophysical parameters has been studied actively in recent years (Korjani, 2016). The results show that neural network can predict petrophysical parameters based on logging data with higher efficiency and accuracy than traditional model-driven methods (Korjani, 2016). The existing study, however, single predict neural network were used, that is, for a neural network one petrophysical parameter can be predicted, such as porosity (POR) or water saturation (SW) with a set of logging data. We propose a multi-task machine learning method for petrophysical parameter prediction with logs, which can improve the efficiency, simplify the process and reduce the mean absolute error compared with single predict neural network.
利用测井资料进行岩石物性参数预测的“共享私有”多任务学习
近年来,利用神经网络映射测井数据与岩石物性参数之间的关系得到了积极的研究(Korjani, 2016)。结果表明,与传统的模型驱动方法相比,神经网络可以基于测井数据预测岩石物理参数,具有更高的效率和准确性(Korjani, 2016)。然而,现有的研究使用的是单一的预测神经网络,即神经网络可以用一组测井数据预测岩石物理参数,如孔隙度(POR)或含水饱和度(SW)。提出了一种多任务的岩石物理参数测井预测机器学习方法,与单一预测神经网络相比,该方法提高了预测效率,简化了预测过程,减小了平均绝对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信