Machine Learning Applied to Blockage Classification in Automotive Radar

Matt R. Fetterman, Aret Carlsen, J. Ru, Yifan Zuo
{"title":"Machine Learning Applied to Blockage Classification in Automotive Radar","authors":"Matt R. Fetterman, Aret Carlsen, J. Ru, Yifan Zuo","doi":"10.1109/ICMIM48759.2020.9298969","DOIUrl":null,"url":null,"abstract":"Detection of radar blockage is a critical safety function for automotive radar. In this paper, we report on a machine-learning approach to classify the blockage condition in automotive radar, using detection data. We consider logistic regression, tree-bagging, and neural network approaches. We used pruning to reduce the size of the neural network to make it a viable option for embedded processors with limited memory. The results show that the classifiers, especially the neural network, can achieve high accuracy with a low false-alarm rate.","PeriodicalId":150515,"journal":{"name":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"15 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM48759.2020.9298969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of radar blockage is a critical safety function for automotive radar. In this paper, we report on a machine-learning approach to classify the blockage condition in automotive radar, using detection data. We consider logistic regression, tree-bagging, and neural network approaches. We used pruning to reduce the size of the neural network to make it a viable option for embedded processors with limited memory. The results show that the classifiers, especially the neural network, can achieve high accuracy with a low false-alarm rate.
机器学习在汽车雷达堵塞分类中的应用
雷达阻塞检测是汽车雷达的一项重要安全功能。在本文中,我们报告了一种机器学习方法,利用检测数据对汽车雷达中的阻塞状况进行分类。我们考虑逻辑回归、树袋和神经网络方法。我们使用剪枝来减小神经网络的大小,使其成为内存有限的嵌入式处理器的可行选择。结果表明,该分类器,特别是神经网络,可以在较低的误报率下达到较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信