Joel Höglund, Dejan Ilić, S. Karnouskos, R. Sauter, P. Silva
{"title":"Using a 6LoWPAN smart meter mesh network for event-driven monitoring of power quality","authors":"Joel Höglund, Dejan Ilić, S. Karnouskos, R. Sauter, P. Silva","doi":"10.1109/SmartGridComm.2012.6486025","DOIUrl":null,"url":null,"abstract":"Power quality monitoring is one of the key issues of managing an electrical grid, which is becoming even more important with more distributed and more variable generation. Today expensive equipment allows monitoring of the power network at key points, but for cost reasons this can not reach the residential end-user. To prevent an excessive need for specialized monitoring hardware, e.g. network analysers, it is proposed to engage the capabilities of modern smart meters which can monitor and report power quality events (e.g. voltage deviations). Subsequently a grid operator can follow up with actions in an affected area in order to analyse problems e.g. by increasing the sampling rate. Although the smart meter precision is not comparable to the precision of a commercial network analyser, in large numbers distributed smart meters forming a mesh network can provide sufficient information for power quality in an area while keeping the monitoring overhead and the cost low. It is shown that by using modern interoperable wireless communication protocols and Internet services, the proposed system has a high degree of flexibility, and good potential for scalability and resilience. The preliminary evaluation shows that the smart metering infrastructure, if coupled with suitable information and communication tools, can offer innovative value-added services and enhance existing business processes.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6486025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Power quality monitoring is one of the key issues of managing an electrical grid, which is becoming even more important with more distributed and more variable generation. Today expensive equipment allows monitoring of the power network at key points, but for cost reasons this can not reach the residential end-user. To prevent an excessive need for specialized monitoring hardware, e.g. network analysers, it is proposed to engage the capabilities of modern smart meters which can monitor and report power quality events (e.g. voltage deviations). Subsequently a grid operator can follow up with actions in an affected area in order to analyse problems e.g. by increasing the sampling rate. Although the smart meter precision is not comparable to the precision of a commercial network analyser, in large numbers distributed smart meters forming a mesh network can provide sufficient information for power quality in an area while keeping the monitoring overhead and the cost low. It is shown that by using modern interoperable wireless communication protocols and Internet services, the proposed system has a high degree of flexibility, and good potential for scalability and resilience. The preliminary evaluation shows that the smart metering infrastructure, if coupled with suitable information and communication tools, can offer innovative value-added services and enhance existing business processes.