{"title":"Packet-based Markov modeling of Reed-Solomon block coded correlated fading channels","authors":"C. Pimentel, F. Alajaji","doi":"10.1109/SPAWC.2008.4641628","DOIUrl":null,"url":null,"abstract":"This paper considers the transmission of a Reed-Solomon (RS) code over a binary modulated time-correlated flat Rician fading channel with hard-decision demodulation. We define a binary packet (symbol) error sequence that indicates whether or not an RS symbol is transmitted successfully across the discrete channel whose input enters the modulator and whose output exits the demodulator. We then approximate the discrete channelpsilas packet error sequence using an Mth order Markov queue-based channel (QBC). In other words, the QBC is used to model the discrete channel at the packet level. Modeling accuracy is evaluated by comparing the simulated probability of codeword error (PCE) for the discrete channel with the numerically evaluated PCE for the QBC. Modeling results identify accurate low-order QBCs for a wide range of fading conditions and reveal that modeling the discrete channel at the packet level is an efficient tool for non-binary coding performance evaluation over channels with memory.","PeriodicalId":197154,"journal":{"name":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2008.4641628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper considers the transmission of a Reed-Solomon (RS) code over a binary modulated time-correlated flat Rician fading channel with hard-decision demodulation. We define a binary packet (symbol) error sequence that indicates whether or not an RS symbol is transmitted successfully across the discrete channel whose input enters the modulator and whose output exits the demodulator. We then approximate the discrete channelpsilas packet error sequence using an Mth order Markov queue-based channel (QBC). In other words, the QBC is used to model the discrete channel at the packet level. Modeling accuracy is evaluated by comparing the simulated probability of codeword error (PCE) for the discrete channel with the numerically evaluated PCE for the QBC. Modeling results identify accurate low-order QBCs for a wide range of fading conditions and reveal that modeling the discrete channel at the packet level is an efficient tool for non-binary coding performance evaluation over channels with memory.