{"title":"On the Implementation of Compressive Sensing on Wireless Sensor Network","authors":"Dongyu Cao, Kai Yu, Shuguo Zhuo, Y. Hu, Zhi Wang","doi":"10.1109/IoTDI.2015.14","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS) is applied to enable real time data transmission in a wireless sensor network by significantly reduce the local computation and sensor data volume that needs to be transmitted over wireless channels to a remote fusion center. By exploiting the sparse structure of commonly used signals in Wireless Sensor Network (WSN) applications, a Compressed Sensing on WSN (CS-WSN) framework is proposed. This is accomplished by (i) random sub-sampling of data collected at sensor node, (ii) transmitting only the sign-bit of the data samples over wireless channels. It is shown that this CS-WSN framework is capable of delivering similar performance as conventional local data compression method while greatly reduce the data volume and local computation. This proposed scheme is validated using a prototype wireless sensor network test bed. Preliminary experimental results clearly validate the superior performance of this proposed scheme.","PeriodicalId":135674,"journal":{"name":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTDI.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Compressive sensing (CS) is applied to enable real time data transmission in a wireless sensor network by significantly reduce the local computation and sensor data volume that needs to be transmitted over wireless channels to a remote fusion center. By exploiting the sparse structure of commonly used signals in Wireless Sensor Network (WSN) applications, a Compressed Sensing on WSN (CS-WSN) framework is proposed. This is accomplished by (i) random sub-sampling of data collected at sensor node, (ii) transmitting only the sign-bit of the data samples over wireless channels. It is shown that this CS-WSN framework is capable of delivering similar performance as conventional local data compression method while greatly reduce the data volume and local computation. This proposed scheme is validated using a prototype wireless sensor network test bed. Preliminary experimental results clearly validate the superior performance of this proposed scheme.