Measure-transformed Gaussian quasi score test

K. Todros
{"title":"Measure-transformed Gaussian quasi score test","authors":"K. Todros","doi":"10.23919/EUSIPCO.2017.8081572","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a robust generalization of the Gaussian quasi score test (GQST) for composite binary hypothesis testing. The proposed test, called measure-transformed GQST (MT-GQST), is based on a transformation applied to the probability distribution of the data. The considered transform is structured by a non-negative function, called MT-function, that weights the data points. By appropriate selection of the MT-function we show that, unlike the GQST, the proposed MT-GQST incorporates higher-order moments and can gain robustness to outliers. The MT-GQST is applied for testing the parameter of a non-linear model. Simulation example illustrates its advantages as compared to the standard GQST and other robust detectors.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we develop a robust generalization of the Gaussian quasi score test (GQST) for composite binary hypothesis testing. The proposed test, called measure-transformed GQST (MT-GQST), is based on a transformation applied to the probability distribution of the data. The considered transform is structured by a non-negative function, called MT-function, that weights the data points. By appropriate selection of the MT-function we show that, unlike the GQST, the proposed MT-GQST incorporates higher-order moments and can gain robustness to outliers. The MT-GQST is applied for testing the parameter of a non-linear model. Simulation example illustrates its advantages as compared to the standard GQST and other robust detectors.
测度变换高斯准分数检验
在本文中,我们发展了高斯准分数检验(GQST)在复合二元假设检验中的鲁棒推广。所提出的测试称为度量转换GQST (MT-GQST),它基于应用于数据概率分布的转换。所考虑的转换由一个非负函数(称为mt函数)构成,该函数对数据点进行加权。通过适当选择mt -函数,我们表明,与GQST不同,所提出的MT-GQST包含高阶矩,并且可以获得对异常值的鲁棒性。将MT-GQST应用于非线性模型的参数测试。仿真示例说明了它与标准GQST和其他鲁棒检测器相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信