A data-driven BSDF framework

Murat Kurt, G. Ward, Nicolas Bonneel
{"title":"A data-driven BSDF framework","authors":"Murat Kurt, G. Ward, Nicolas Bonneel","doi":"10.1145/2945078.2945109","DOIUrl":null,"url":null,"abstract":"We present a data-driven Bidirectional Scattering Distribution Function (BSDF) representation and a model-free technique that preserves the integrity of the original data and interpolates reflection as well as transmission functions for arbitrary materials. Our interpolation technique employs Radial Basis Functions (RBFs), Radial Basis Systems (RBSs) and displacement techniques to track peaks in the distribution. The proposed data-driven BSDF representation can be used to render arbitrary BSDFs and includes an efficient Monte Carlo importance sampling scheme. We show that our data-driven BSDF framework can be used to represent measured BSDFs that are visually plausible and demonstrably accurate.","PeriodicalId":417667,"journal":{"name":"ACM SIGGRAPH 2016 Posters","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2016 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2945078.2945109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a data-driven Bidirectional Scattering Distribution Function (BSDF) representation and a model-free technique that preserves the integrity of the original data and interpolates reflection as well as transmission functions for arbitrary materials. Our interpolation technique employs Radial Basis Functions (RBFs), Radial Basis Systems (RBSs) and displacement techniques to track peaks in the distribution. The proposed data-driven BSDF representation can be used to render arbitrary BSDFs and includes an efficient Monte Carlo importance sampling scheme. We show that our data-driven BSDF framework can be used to represent measured BSDFs that are visually plausible and demonstrably accurate.
数据驱动的BSDF框架
我们提出了一种数据驱动的双向散射分布函数(BSDF)表示和一种无模型技术,该技术保留了原始数据的完整性,并对任意材料插入了反射和透射函数。我们的插值技术采用径向基函数(rbf)、径向基系统(RBSs)和位移技术来跟踪分布中的峰值。所提出的数据驱动的BSDF表示可用于呈现任意BSDF,并包括一个有效的蒙特卡罗重要采样方案。我们表明,我们的数据驱动的BSDF框架可以用来表示测量的BSDF,这些BSDF在视觉上是可信的,并且可以证明是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信