Wubai Zhou, Chao Shen, Tao Li, Shu‐Ching Chen, Ning Xie
{"title":"Generating textual storyline to improve situation awareness in disaster management","authors":"Wubai Zhou, Chao Shen, Tao Li, Shu‐Ching Chen, Ning Xie","doi":"10.1109/IRI.2014.7051942","DOIUrl":null,"url":null,"abstract":"Hurricane Sandy affected the east coast of U.S. in 2012 and posed immense threats to businesses, human lives and properties. In order to minimize the consequent loss of a catastrophe like this, a critical task in disaster management is to understand situation updates about the disaster from a large number of disaster-related documents, and obtain a big picture of the disaster's trends and how it affects different areas. In this paper, we present a two-layer storyline generation framework which generates an overall or a global storyline of the disaster events in the first layer, and provides condensed information about specific regions affected by the disaster (i.e., a location-specific storyline) in the second layer. To generate the overall storyline of a disaster, we consider both temporal and spatial factors, which are encoded using integer linear programming. While for location-specific storylines, we employ a Steiner tree based method. Compared with the previous work of storyline generation, which generates flat storylines without considering spatial information, our framework is more suitable for large-scale disaster events. We further demonstrate the efficacy of our proposed framework through the evaluation on the datasets of three major hurricane disasters.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Hurricane Sandy affected the east coast of U.S. in 2012 and posed immense threats to businesses, human lives and properties. In order to minimize the consequent loss of a catastrophe like this, a critical task in disaster management is to understand situation updates about the disaster from a large number of disaster-related documents, and obtain a big picture of the disaster's trends and how it affects different areas. In this paper, we present a two-layer storyline generation framework which generates an overall or a global storyline of the disaster events in the first layer, and provides condensed information about specific regions affected by the disaster (i.e., a location-specific storyline) in the second layer. To generate the overall storyline of a disaster, we consider both temporal and spatial factors, which are encoded using integer linear programming. While for location-specific storylines, we employ a Steiner tree based method. Compared with the previous work of storyline generation, which generates flat storylines without considering spatial information, our framework is more suitable for large-scale disaster events. We further demonstrate the efficacy of our proposed framework through the evaluation on the datasets of three major hurricane disasters.