Koji Mikami, H. Okuda, S. Taguchi, Y. Tazaki, Tatsuya Suzuki
{"title":"Model predictive assisting control of vehicle following task based on driver model","authors":"Koji Mikami, H. Okuda, S. Taguchi, Y. Tazaki, Tatsuya Suzuki","doi":"10.1109/CCA.2010.5611209","DOIUrl":null,"url":null,"abstract":"A personalized driver assisting system that makes use of the driver's behavior model is developed. As a model of driving behavior, the Probability-weighted ARX (PrARX) model, a type of hybrid dynamical system models, is introduced. A PrARX model that describes the driver's vehicle-following skill on expressways is identified using a simple gradient descent algorithm from actual driving data collected on a driving simulator. The obtained PrARX model describes the driver's logical decision making as well as continuous maneuver in a uniform manner. Finally, the optimization of the braking assist is formulated as a mixed-integer linear programming (MILP) problem using the identified driver model, and computed online in the model predictive control framework.","PeriodicalId":284271,"journal":{"name":"2010 IEEE International Conference on Control Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Control Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2010.5611209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
A personalized driver assisting system that makes use of the driver's behavior model is developed. As a model of driving behavior, the Probability-weighted ARX (PrARX) model, a type of hybrid dynamical system models, is introduced. A PrARX model that describes the driver's vehicle-following skill on expressways is identified using a simple gradient descent algorithm from actual driving data collected on a driving simulator. The obtained PrARX model describes the driver's logical decision making as well as continuous maneuver in a uniform manner. Finally, the optimization of the braking assist is formulated as a mixed-integer linear programming (MILP) problem using the identified driver model, and computed online in the model predictive control framework.