Self-Adaptive Evolutionary Computation Methods for GARCH Model Optimization

A. Swain
{"title":"Self-Adaptive Evolutionary Computation Methods for GARCH Model Optimization","authors":"A. Swain","doi":"10.2139/ssrn.2975943","DOIUrl":null,"url":null,"abstract":"This paper deals with the parameter estimation of popular GARCH(1,1) model using an effective hybrid evolutionary computation (EC) based method. These parameters are estimated by maximizing the nonlinear log-likelihood function. Further, in this study, the effectiveness of the EC based methods is verified through a comparative study with that of popular optimization methods such as Marquardt, BHHH etc. incorporated in the ready made software packages like MATLAB, EViews and Excel. Here, two EC-based methods, one a fast evolutionary programming method and the other one, a hybrid evolutionary computation method are considered for exploration and subsequent discussion.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2975943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the parameter estimation of popular GARCH(1,1) model using an effective hybrid evolutionary computation (EC) based method. These parameters are estimated by maximizing the nonlinear log-likelihood function. Further, in this study, the effectiveness of the EC based methods is verified through a comparative study with that of popular optimization methods such as Marquardt, BHHH etc. incorporated in the ready made software packages like MATLAB, EViews and Excel. Here, two EC-based methods, one a fast evolutionary programming method and the other one, a hybrid evolutionary computation method are considered for exploration and subsequent discussion.
GARCH模型优化的自适应进化计算方法
本文采用一种有效的基于混合进化计算(EC)的方法对GARCH(1,1)模型的参数估计进行了研究。通过最大化非线性对数似然函数来估计这些参数。此外,在本研究中,通过与MATLAB、EViews、Excel等现成软件包中常用的Marquardt、BHHH等优化方法的对比研究,验证了基于EC方法的有效性。本文考虑了两种基于ec的方法,一种是快速进化规划方法,另一种是混合进化计算方法,以供探索和后续讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信