Sparse representation of texture patches for low bit-rate image compression

Mai Xu, Jianhua Lu, Wenwu Zhu
{"title":"Sparse representation of texture patches for low bit-rate image compression","authors":"Mai Xu, Jianhua Lu, Wenwu Zhu","doi":"10.1109/VCIP.2012.6410824","DOIUrl":null,"url":null,"abstract":"This paper proposes a sparse representation based approach for low bit-rate image compression using the learnt over-complete dictionary of texture patches. We first propose to compress each patch of the image with sparse and compressible linear combinations (via nonzero coefficients) of texture patterns encoded in a dictionary for image patches. Then, we find out that the compressibility and sparsity of coefficients can be achieved by the proposed recursive procedure of solving ℓ1 optimization problem of sparse representation. Moreover, rather than transform-based patterns (e.g. DCT), we explore the basic texture patterns from other training images with a learning algorithm based on the gradient descent, to form the over-complete dictionary. The experimental results demonstrate the effectiveness of the proposed approach.","PeriodicalId":103073,"journal":{"name":"2012 Visual Communications and Image Processing","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Visual Communications and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2012.6410824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a sparse representation based approach for low bit-rate image compression using the learnt over-complete dictionary of texture patches. We first propose to compress each patch of the image with sparse and compressible linear combinations (via nonzero coefficients) of texture patterns encoded in a dictionary for image patches. Then, we find out that the compressibility and sparsity of coefficients can be achieved by the proposed recursive procedure of solving ℓ1 optimization problem of sparse representation. Moreover, rather than transform-based patterns (e.g. DCT), we explore the basic texture patterns from other training images with a learning algorithm based on the gradient descent, to form the over-complete dictionary. The experimental results demonstrate the effectiveness of the proposed approach.
低比特率图像压缩中纹理块的稀疏表示
本文提出了一种基于稀疏表示的低比特率图像压缩方法,该方法利用学习到的纹理补丁的过完备字典进行压缩。我们首先提出使用图像补丁字典中编码的纹理模式的稀疏和可压缩线性组合(通过非零系数)压缩图像的每个补丁。然后,我们发现系数的可压缩性和稀疏性可以通过提出的求解稀疏表示的l_1优化问题的递推过程来实现。此外,我们不是基于变换的模式(例如DCT),而是使用基于梯度下降的学习算法从其他训练图像中探索基本纹理模式,以形成过完整字典。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信