Global Binarization of Document Images Using a Neural Network

A. Khashman, B. Şekeroğlu
{"title":"Global Binarization of Document Images Using a Neural Network","authors":"A. Khashman, B. Şekeroğlu","doi":"10.1109/SITIS.2007.58","DOIUrl":null,"url":null,"abstract":"In degraded scanned documents, where considerable background noise or variation in contrast and illumination exists, pixels may not be easily classified as foreground or background pixels. Thus, the need to perform document binarization in order to enhance the document image by separating foregrounds (text) from backgrounds. A new approach that combines a global thresholding method and a supervised neural network classifier is proposed to enhance scanned documents and to separate foreground and background layers. Thresholding is first applied using mass-difference thresholding to obtain various local optimum threshold values in an image. The neural network is then trained using these values at its input and a single global optimum threshold value for the entire image at its output. Compared with other methods, experimental results show that this combined approach is computationally cost effective and is capable of enhancing degraded documents with superior foreground and background separation results.","PeriodicalId":234433,"journal":{"name":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2007.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In degraded scanned documents, where considerable background noise or variation in contrast and illumination exists, pixels may not be easily classified as foreground or background pixels. Thus, the need to perform document binarization in order to enhance the document image by separating foregrounds (text) from backgrounds. A new approach that combines a global thresholding method and a supervised neural network classifier is proposed to enhance scanned documents and to separate foreground and background layers. Thresholding is first applied using mass-difference thresholding to obtain various local optimum threshold values in an image. The neural network is then trained using these values at its input and a single global optimum threshold value for the entire image at its output. Compared with other methods, experimental results show that this combined approach is computationally cost effective and is capable of enhancing degraded documents with superior foreground and background separation results.
基于神经网络的文档图像全局二值化
在退化的扫描文档中,存在相当大的背景噪声或对比度和照明变化,像素可能不容易分类为前景或背景像素。因此,需要执行文档二值化,以便通过将前景(文本)与背景分离来增强文档图像。提出了一种将全局阈值法和监督神经网络分类器相结合的方法来增强扫描文档,并分离前景层和背景层。首先利用质量差阈值法进行阈值分割,得到图像中各种局部最优阈值。然后,神经网络使用这些值作为其输入,并在其输出中使用整个图像的单个全局最优阈值来训练。实验结果表明,与其他方法相比,该组合方法具有计算成本效益,并且能够增强退化文档,具有较好的前景和背景分离效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信