Learning Visual Feature Detectors for Obstacle Avoidance using Genetic Programming

Andrew J. Marek, W. Smart, Martin C. Martin
{"title":"Learning Visual Feature Detectors for Obstacle Avoidance using Genetic Programming","authors":"Andrew J. Marek, W. Smart, Martin C. Martin","doi":"10.1109/CVPRW.2003.10066","DOIUrl":null,"url":null,"abstract":"In this paper, we describe the use of Genetic Programming (GP) techniques to learn a visual feature detection for a mobile robot navigation task. We provide experimental results across a number of different environments, each with different characteristics, and draw conclusions about the performance of the learned feature detector. We also explore the utility of seeding the initial population with a previously evolved individual, and discuss the performance of the resulting individuals.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"690 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we describe the use of Genetic Programming (GP) techniques to learn a visual feature detection for a mobile robot navigation task. We provide experimental results across a number of different environments, each with different characteristics, and draw conclusions about the performance of the learned feature detector. We also explore the utility of seeding the initial population with a previously evolved individual, and discuss the performance of the resulting individuals.
基于遗传规划的避障视觉特征检测器学习
在本文中,我们描述了使用遗传规划(GP)技术来学习移动机器人导航任务的视觉特征检测。我们在许多不同的环境中提供了实验结果,每个环境都有不同的特征,并得出关于学习特征检测器性能的结论。我们还探讨了用先前进化的个体播种初始种群的效用,并讨论了由此产生的个体的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信